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ABSTRACT 

This work addresses a versatile modeling of complex photonic integrated circuits (PICs). We introduce a co-
simulation solution for combining the efficient modeling capabilities of a circuit-level simulator, based on 
analytical models of PIC sub-elements and frequency-dependent scattering matrix (S-matrix) description, and an 
accurate electromagnetic field simulator that implements the finite element method (FEM) for solving photonic 
structures with complicated geometries. 

This is exemplified with the model of a coupled-resonator induced transparency (CRIT), where resonator 
elements are first modeled in the field simulator. Afterwards, the whole structure is created at a circuit level and 
statistical analysis of tolerances is investigated. 

1. INTRODUCTION 
Photonic Design Automation (PDA) is becoming one of the main drivers in the development of photonic 
integrated circuits (PICs). The simulation of a photonic circuit can be very complex because of the large 
diversity of photonic components, the broad frequency ranges of optical signals involved and due to the 
presence of very different characteristic lengths (and thus time scales) in the simulated circuit. To properly 
handle such diversities, modern photonic circuit simulators are based on the segmentation of the modeled PIC 
into building blocks. Each PIC element is coupled to other PIC elements via guided modes of channel optical 
waveguides. This allows to separate circuit-level modeling from device-level modeling and facilitates that 
different PIC elements in the same circuit are modeled by different methods. 

In previous works we have addressed the modeling of fully passive PICs, based on the description of PIC 
elements in terms of frequency-dependent scattering-matrices [1]. Lately, we presented a new method for 
efficient modeling of hybrid large-scale PICs that aids pure time-domain simulations, so called, time-and-
frequency domain modeling (TFDM) [2]. Although a circuit-level approach covers a large field of application 
designs, traditional photonic simulation techniques based on solving the Maxwell equations are complement for 
modeling specific PIC elements with higher level of geometrical details. 

In this contribution we present a solution for co-simulation within a circuit-level simulator and a full 2D/3D 
simulator that implements frequency‐domain finite‐element method (FEM) for solving photonic devices with 
any geometry. In this procedure, the layout of the ring resonator, wire, and slab wires is designed in the FEM-
based simulator and an accurate calculation of waveguide parameters is performed. The results are shared with 
the circuit-level simulator, which is used to design and optimize the device topology. 
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2. SIMULATION ENVIRONMENT 
2.1 Design Flow 

The ultimate goal of a design is to be fabricated by a foundry. Nowadays, the technology used at foundries is 
still far from being perfect – there are sufficiently strong variations of waveguide height, width and roughness 
which should be minimized and then compensated in designed circuits by using heaters, for instance, or by 
fabricating several samples of the circuit in the same wafer. This fact emphasizes how important it is to start a 
design from the circuit level and evaluate different solutions, analyze tolerances of fabrication processes, or 
calculate the power budget. 

In such a design cycle, from top to bottom, i.e., from application design to fabrication design, circuit simulation 
tools such as VPIcomponentMaker Photonic Circuits [3] or others [4] are placed at the top level. Important 
design aspects to be solved at circuit level are: 

• Choice of technology (InP, Silicon, ...): The total insertion loss, the minimum radius and width of the 
waveguides, as well as the minimum waveguide separation depend directly on the technology. 

• Investigation of alternative designs: The same application might be solved with different implementations. 
For instance, WDM filtering can be performed with AWG elements, cascaded or parallel ring-resonator 
structures. Power splitting can be accomplished using coupled waveguides but also using MMI structures. 

• Sensitivity analysis of geometrical imperfections and thermal effects: Paths of different length might 
introduce amplitude and phase imbalances. A rise in temperature might imply differences at the resonance 
frequencies. 

At the device level, Maxwell’s equations inside the structure are solved, following the exact geometry, and 
accounting for the impact of characteristics as small as roughness and curvatures, in two- or three-dimensional 
representations. Further, an accurate calculation of the propagation constant can be obtained. The propagation 
constant, or the related effective index, are one of the main input parameters for the circuit simulator. In the 
design process there might be several iterations between circuit- and device-level simulators before proceeding 
with the design on the technology level.  

On the technology level, the layout and cross section of the circuit are created. Using a layout design tool, the 
locations of optical and electrical ports are fixed and the space is optimized. In this step, final foundry specific 
design rule checks are carried out as well. 

The output of this design circle could be a file containing planar geometric shapes and layer information for the 
specific foundry. Completing the cycle, once the device is fabricated, characterization measurements can be 
used in the circuit design for specifying the range of tolerances associated to that technology or for developing 
new analytical models. 

As a summary, in a top-down design flow, the circuit-level simulator is used for fast prototyping of the device 
by analytical expressions or pre-calculated transfer functions. Alternatively, it may call the device-level 
simulator from individual sub-elements in the circuit, which require a deeper level of analysis, or, when the 
design reached a mature stage, call a mask-layout software and close the design process.  

2.2 Circuit-level simulations with VPIcomponentMaker Photonic Circuits 

With the circuit-level simulation approach implemented in VPIcomponentMaker Photonic Circuits, a photonic 
IC is composed out of several active and/or passive sub-elements, also named PIC elements (Fig. 1, left). Each 
PIC element represents a functional building block with several input and/or output ports. Each port is 
represented by optical channel waveguides that support two orthogonally polarized fundamental guided modes 
(TE-/TM–like), described by Ex/Ey signal components. Ports are bidirectional, so that back reflections and 
coupling of counter-propagating waves can be accounted for (Fig. 1, right). Thus, each PIC element can be seen 
as a black-box producing outgoing guided modes of the device ports from the corresponding incoming modes. 

PIC elements in the same circuit can be modeled by different methods and with different simulation accuracy. 
Passive elements are commonly described in terms of frequency defined S-matrices, while active parts are 
modeled in the time domain by means of the transmission-line model (TLM). At the same time, S-matrices can 
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3. COSIMULATION DESIGN PROCESS 
3.1 Considerations 

The usage of the frequency-domain FEM approach implies several limitations in the designs. Foremost, it can 
be used for modeling only linear passive materials. An extension of this approach to nonlinear or active 
materials is not trivial and it would be better just to change the simulation approach to time-domain FEM 
simulations. Another difficult problem for FEM is the analysis of device responses to short pulses or rapidly 
modulated signals. Beside those matters, it can be used for accurate and efficient calculation of all eigenmodes 
of photonic devices, such as guided modes of waveguides with arbitrary geometries and/or resonance modes of 
micro-rings and micro-disks. Additionally, any dispersive materials (including metals) can be modeled 
accurately and efficiently. 

3.2 Design procedure 

Step 1: Layout design of wire and slab waveguides in the device-level simulator 

After defining the exact geometry of the device, waveguide dispersion, effective and group indices are 
calculated accurately in 2D/3D simulations. In the first step it is also possible to estimate waveguide loss due to 
energy leakage to the substrate when the guided mode is not guided completely, but radiating as well. 
Additionally, waveguide loss, index change and mode coupling due to waveguide bending are estimated. These 
parameters can be parameterized with sufficient accuracy as functions of the bending radius with few constants 
that should be calculated by solving Maxwell’s equations. Furthermore, the effect of backscattering inside 
straight/bent waveguide due to sidewall roughness is analyzed. This effect represents one of the main limiting 
factors for applications of high-Q micro-rings. 

Step 2. Export model parameters and apply in the circuit-level simulator 

The model parameters found during Step 1 are substituted into the circuit‐level simulator, which is used to 
design and preliminary optimize the topology of the photonic integrated circuit. At this stage, it can be set to 
operate with natively supported analytical models and get estimates of the required structural parameters. For 
instance, when modeling a ring resonator, the desired resonance parameters (resonant frequency, free spectral 
range, Q‐factor) and the above‐calculated waveguide parameters (effective index, group index, dispersion, 
attenuation) are employed for obtaining estimates of the structural parameters (ring diameter, waveguide length, 
coupling coefficient between straight and ring waveguides). Automated sweeps and script-assisted optimization 
routines allow investigation of many parameter variations in very short time, and thus, help the designer to find 
optimum topology settings. 

Step 3. Optimization of PIC sub‐elements in the device-level simulator 

After designing the integrated device on the circuit level, the user would need to come back to the device-level 
simulator and perform the final optimization of important PIC elements (e.g., their layouts). After completion, 
the user shall be able to save the final S‐matrices of the optimized components into files for further system 
performance analysis of the PIC. 

Step 4. Verification of PIC performance using the circuit-level simulator 

The S‐matrices calculated in Step 3 are loaded by the circuit-level simulator and used for verifying the final 
performance of the integrated device. The optimized sub‐elements can also be used as initial building blocks 
for designing other composite devices at the circuit level. 

4. APPLICATION EXAMPLE:  
COUPLED-RESONATOR-INDUCED TRANSPARENCY (CRIT) 

4.1 Ring-Coupler Design 

To illustrate the cosimulation design process described above, we consider a PIC formed by two coupled silicon 
ring resonators with 10um diameter (Fig. 2) connected by two straight waveguides. This structure exhibits the 
effect of coupled-resonator-induced transparency (CRIT) – an all-optical analogue to electromagnetically 
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