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SUMMARY 

Several techniques for modeling different design characteristics of integrated IQ-transmitters have been described by 
means of modeling with different level of abstraction. A behavioral modeling approach has been used to determine the 
effect of chirp introduced by EAMs and to analyze the electronic circuit in terms of applied voltage, jitter and 
synchronization. Non-ideal characteristics of the EAM introduce rotation and contraction of the constellation diagram, 
which is more severe in the case of non-linear dependencies. These degradations affect the extinction ratio of the 
signal and also the achievable modulation rate. Random jitter of the electrical drive is not a problem in such 
transmitters, if kept within an acceptable range. However, the design is rather sensitive to asynchronization of the 
electrical paths. A detailed circuit model of the transmitter, considering it as a photonic integrated circuit has been 
introduced for a more comprehensive analysis based on physical characteristics of the PIC sub-elements. Reflections 
at the interface of active-passive elements are more significant as when they occur at the end of the device. Phase 
changes and alterations in the dimensions of MMI coupling elements also constraint the modulation performance, even 
producing non-linear effects. 
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