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ABSTRACT 

The exponentially growing number of components in complex large-scale Photonic Integrated Circuits (PICs) requires 
the necessity of photonic design tools with system-level abstraction, which are efficient for designs enclosing hundreds 
of elements. Ring-resonators and derived structures represent one example for large-scale photonics integration. Their 
characteristics can be parameterized in the frequency-domain and described by scattering matrix (S-matrix) parameters. 
The S-matrix method allows time efficient numerical simulations, decreasing the simulation time by several orders of 
magnitude compared to time-domain approaches yielding a better modeling accuracy as the number of PIC elements 
increases. 

We present the modeling of optical waveguides within a sophisticated design environment using application examples 
that contain ring-resonators as fundamental structure. In the models, the two orthogonally polarized guided modes are 
characterized by their specific index and loss parameters. Systematic variation of circuit parameters, such as coupling 
factor or refractive index, allows a comfortable design, analysis and optimization of many types of complex integrated 
photonic structures. 

Keywords: photonic integrated circuit, ring resonator, ring coupler, photonic waveguide, scattering matrix, design, 
modeling, photonic integration 
 

1. INTRODUCTION 
The number of components in Photonic Integrated Circuits (PICs) emerges exponentially, similar to Moore's law of 
electronic integrated circuits. The number of elements in most advanced PICs reaches a few hundred already now, 
especially those in computing [1-2] and networking [3] applications. This leads to the necessity of photonic design tools 
with system-level abstraction supporting efficient simulations of such structures.  

Photonics modeling can be addressed through different approaches depending on the level of the design, from a single 
device, a transmission link or a large network. In a multi-layer modeling framework [4], the modeling of PICs is placed 
at a device-level design. Traditional tools based on Finite-Difference Time-Domain (FDTD) method and Beam 
Propagation Method (BPM) solvers are widely used for modeling small-scale PICs. However, they are not appropriate 
for modeling large-scale PICs because they are too slow and their layout editors are inconvenient for defining schematics 
with a large number of elements. Time-domain methods are very competitive for solving light propagation in optical 
waveguides with arbitrary geometries like multimode interference devices (MMIs) or star couplers but they become 
highly inefficient for modeling PICs with several sub-components. Moreover, a deep level of detail is not necessary in 
most of the cases and a description of the device in terms of S-matrices is sufficient. The speed of numerical simulations 
can be significantly increased by usage of the S-matrix approach, which operates in the frequency-domain. The S-matrix 
approach has been developed formerly and is widely used in high-frequency electrical engineering to characterize and 
design microwave circuits. This method can also be applied for the modeling of large-scale photonic crystals [5-6]. 

Ring-resonators (RRs) and derived structures represent one example for large scale photonics integration, which can be 
well described by S-matrices. RRs in conjunction with silicon photonics integration technologies are very promising as 
they offer a growing number of applications such as modulation/demodulation, switches, delay lines and other signal 
processing tasks [7-8]. After an introduction into the general ideas of the modeling framework in the next section, several 
ring-resonator applications are presented and discussed in section three of this paper. 
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Figure 2. Representation of a photonic circuit by discretization of S-matrices [6]. 

In our modeling framework for passive PICs, each device is considered as a black box, characterized by several ports, 
enumerated from 1 to N (Figure 3). Each port represents a device connection point through which optical signals come 
in/out to the device. In most cases, ports can be associated with photonic wire waveguides. 

 
Figure 3. Representation of a 5-port PIC device. Transfer functions between each port are represented by S-parameters, 

forming the S-matrix of the PIC device. 

Ports can be intrinsically multimode, however, here we consider that each port supports exactly two polarization modes, 
a TE-like mode in the Ex component and a TM-like mode in its Ey component of the signal field representation. Ports of 
physical PIC devices are intrinsically bidirectional so back reflections and polarization coupling might occur. The 
resulting S-matrix of the modeled passive PIC device is a matrix of complex frequency-dependent functions (transfer 
functions) that multiplied in frequency-domain (or convolved in the time-domain) with the input signals produces the 
output signals. Denoting the spectra of input and output signals at port n as ܧሬԦሺinሻሺ݂ሻ and  ܧሬԦሺoutሻሺ݂ሻ, we can write the 
filtering in frequency-domain as: 

 ൮ܧሬԦଵ௨௧ܧሬԦଶ௨௧ܧሬԦே௨௧ሸ ൲ ൌ መܵሺ݂ሻ ൮ܧሬԦଵܧሬԦଶܧሬԦேన୬ሸ ൲ (1) 

 
where the S-matrix ܵ̂ሺ݂ሻ consists of NxN Jones matrices ܶ̂ሺ݂ሻ connecting input port m with the output port n. In its 
turn, each Jones matrix is formed by four complex-valued frequency-dependent transfer functions: ்ܶா,்ாሺ݂ሻ, ்ܶா,்ெሺ݂ሻ, ்ܶெ,்ாሺ݂ሻ, and ்ܶெ,்ெሺ݂ሻ. Once the frequency dependencies of all the transfer functions constituting the S-
matrix of the modeled passive PIC device are known, Eq. (1) is applied for obtaining output signals from the input 
signals in the frequency-domain. 

2.1 Analytical model for Ring Resonator  

The Ring Resonator structure consists of an optical waveguide bended into a circle and placed close to a straight 
waveguide, so coupling between these two elements occurs. The resultant magnitude of the transfer function is unit for 
all frequencies while its group delay has maxima at resonance frequencies (Figure 4). This element acts as an all-pass 
phase shifter. The resonance frequencies are determined by the length of the waveguide forming the ring. Inside the ring, 
the spectrum of the circulating signal has maxima at resonance frequencies. The S-matrix of the RR can be either loaded 
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from file or calculated analytically. If an analytical description is applied, the S-matrices are determined on the basis of 
the following physical parameters [12]. The RR can be designed either for getting the desired resonance properties 
(specified by Free Spectral Range - FSR, design polarization, resonance frequency, and Q-factor) or on the basis of 
structure parameters (specified by parameters coupling waveguide-ring, ring length and ring phase shift). Attenuation in 
the ring and bus are also considered. 

 
Figure 4. Group delay of the transfer function of a single-ring resonator for two polarizations (left) and RR structure (right). 

The considered analytical model does not account for back reflections. Hence, transfer functions for n=m in Eq. (1) are 
zero. Therefore, the only non-trivial transfer functions will be those that connect input waves at left port with output 
waves at right port (and vice versa) for the same polarization: 

 ቆܧଶ,்ாout ሺ݂ሻܧଶ,்ெout ሺ݂ሻቇ ൌ ቆ ଶܶ,ଵ்ா,்ாሺ݂ሻ 00 ଶܶ,ଵ்ெ,்ெሺ݂ሻቇ ቆܧଵ,்ாin ሺ݂ሻܧଵ,்ெin ሺ݂ሻቇ (2) 

The two non-zero transfer function coefficients are calculated as outlined in [12] and are equal to: 

 ଶܶ,ଵ்ா,்ாሺ݂ሻ ൌ ௧ಶିୣ୶୮ሺିఏಶሺሻሻଵି௧ಶୣڄ୶୮ሺିఏಶሺሻሻ expሼെ்݆̃ߚா,௨௦ሺ݂ሻܮ௨௦ሽ (3) 

 ଶܶ,ଵ்ெ,்ெሺ݂ሻ ൌ ௧ಾିୣ୶୮ሺିఏಾሺሻሻଵି௧ಾୣڄ୶୮ሺିఏಾሺሻሻ expሼെ்݆̃ߚெ,௨௦ሺ݂ሻܮ௨௦ሽ (4) 

Here, the following notations have been introduced: ்ݐா ൌ ඥ1 െ ெ்ݐ ;ா்ܭ ൌ ඥ1 െ ாሺ݂ሻ்ߠ ;ெ்ܭ ൌ ா,ሺ݂ሻ்ߚ̃ ڄ ܮ െ ்߮ா,; ்ߠெሺ݂ሻ ൌ ெ,ሺ݂ሻ்ߚ̃ ڄ ܮ െ ்߮ெ, 

with ்̃ߚா,and ்̃ߚெ,being generalized complex-valued propagation constants of TE- and TM-like guided modes in 
the ring waveguide. Accordingly, ்̃ߚா,௨௦ and ்̃ߚெ,௨௦are generalized complex-valued propagation constants of TE- and 
TM-like guided modes in the bus waveguide. Here, propagation constants include also mode attenuation: 

ா,ሺ݂ሻ்ߚ̃  ൌ ଶగ ݊,்ாሺ݂ሻ െ ଶ  ா, (5)்ߙ

with similar expressions (using different attenuation constants) for the three other propagation constants.  

The attenuation inside the ring waveguide can be specified either explicitly or by specifying the desired loss per one 
roundtrip along the ring waveguide. With the length of the ring waveguide Lring, the attenuation constants are calculated 
for the latter case as ்ߙா,ௗ ൌ ெ,ௗ்ߙ   andܮ/ா்ݏݏܮ݊ݎݑܶ ൌ  . The frequency dependence ofܮ/ெ்ݏݏܮ݊ݎݑܶ
the effective indices ݊,்ாሺ݂ሻ and ݊,்ெሺ݂ሻof TE- and TM-like modes is assumed to be equal in both bus and ring 
waveguides, and is found from the parameters effective index, group index and reference frequency and dispersion.  

The other parameters are length of the ring waveguide, Lring; coefficients KTE and KTM , describing power coupling 
between the bus and ring waveguides; and additional phase shifts, ்߮ா,and ்߮ெ,, added to accumulated complex 
phases of both modes in the ring waveguide can be either specified explicitly or calculated automatically for the desired 
resonance properties. The latter case is realized by specifying the desired resonance properties free spectral range, 
resonance frequency and the resonance quality factor which may be specified for each polarization individually. With 
this, the corresponding structure parameters can be calculated from simple expressions. 
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2.2 Analytical model for Ring Coupler 

The Ring Coupler (RC) structure is formed by two bus waveguides coupled to a RR. A single RC acts as an efficient 
add-drop filter (Figure 5). The analytical model of the RC is very similar to the ring resonator, with the difference that 
two coupling coefficients are considered for the ring and upper and lower waveguides. 

  

 
Figure 5. Schematic of the ring coupler structure and magnitude of the transfer function at ports 2 and 3 when an input 

signal is applied at port 1. 

In a simplified model of the RC, neither back reflections nor TE/TM mode coupling is considered, as in the RR model. 
Therefore, for n=m transfer functions are zero and there is no coupling between signals in ports 1 and 3 and in ports 2 
and 3. Consequently, the only non-trivial transfer functions are those that connect input waves at ports 2 and 3 with 
output waves at ports 1 and 4 (and vice versa), for one polarization. Here, we consider as an example the expressions for 
TE-polarization (they are functionally the same for the TM-polarization), so output fields are described as: 

 ቆܧଵ,்ாout ሺ݂ሻܧସ,்ாout ሺ݂ሻቇ ൌ ቆ ଵܶ,ଶ்ா,்ாሺ݂ሻ ଵܶ,ଷ்ா,்ாሺ݂ሻସܶ,ଶ்ா,்ாሺ݂ሻ ସܶ,ଷ்ா,்ாሺ݂ሻቇ ቆܧଶ,்ாin ሺ݂ሻܧଷ,்ாin ሺ݂ሻቇ (6) 

The transfer function coefficients are calculated similar as for the RR case [12]: 

 ଵܶ,ଶ்ா,்ாሺ݂ሻ ൌ ସܶ,ଷ்ா,்ாሺ݂ሻ ൌ ಶೠಶೢୣ୶୮ሺఏಶሺሻ/ଶሻ௧ಶೠ௧ಶೢିୣ୶୮ሺఏಶሺሻሻ expሼെ்݆̃ߚா,௨௦ሺ݂ሻܮ௨௦ሽ (7) 

 ସܶ,ଶ்ா,்ாሺ݂ሻ ൌ ௧ಶೠି௧ಶೢୣ୶୮ሺఏಶሺሻሻ௧ಶೠ௧ಶೢିୣ୶୮ሺఏಶሺሻሻ expሼെ்݆̃ߚா,௨௦ሺ݂ሻܮ௨௦ሽ (8) 

 ଵܶ,ଷ்ா,்ாሺ݂ሻ ൌ ௧ಶೢି௧ಶೠୣ୶୮ሺఏಶሺሻሻ௧ಶೠ௧ಶೢିୣ୶୮ሺఏಶሺሻሻ expሼെ்݆̃ߚா,௨௦ሺ݂ሻܮ௨௦ሽ (9) 

where coupling (k), transfer (t) and propagation (β) coefficients follow analogue expressions as for the RR, described in 
the previous section. The RC can be also designed either for getting the desired resonance properties or on the basis of 
structure parameters. 
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