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Abstract

The paper reports on the effects of adding noise, damping and impurities to
the 2-dimensional nonlinear Schrédinger equation. The effects of including
long-range dispersion in the 1-dimensional nonlinear Schrodinger equation
are also examined. The framework of the reported results is the application
of nonlinear Schrodinger systems in the study of molecular systems and
organic thin films. The paper includes numerical as well as analytical
results.

1. Introduction

We consider the Schrodinger system with cubic nonlin-
earity. This system models optical media, molecular thin
films in the continuum limit, deep water waves, and many
other physical systems which exhibit weak nonlinearity and
strong dispersion. The effects that we shall discuss were
observed in our earlier work [1-7]. A motivation for study-
ing the two-dimensional nonlinear Schriodinger equation
(NLS) with fluctuations and impurities is our wish to under-
stand efficient energy transfer in J-aggregates (Scheibe-
aggregates) [8, 9]. Our starting point is a two-dimensional
Davydov model with nonlinear coupling between the
exciton and phonon system, and with white noise in the
phonon system.

In section 2 we derive a single equation for the exciton
system with multiplicative colored noise and a nonlinear
damping term. In the continuum limit, the collective coordi-
nate approach indicates that an energy balance between
energy input (from the noise term) and dissipation can be
established. Thus this model may describe the state of
thermal equilibrium in the molecular aggregate. The coher-
ent exciton moving on the aggregate [8, 9] is modelled by
the ground state solution to the 2-D nonlinear Schrodinger
equation, and the lifetime has been related to the collapse
time of the ground state [10]. For sufficiently strong nonlin-
earity the thermal fluctuations will slow down the collapse.
As a result this life time increases with the variance of the
fluctuations, i.e., the temperature.

In Section 3, we model the presence of acceptor molecules
in the J-aggregate by an impurity term in the nonlinear Sch-
rodinger equation. The resulting dynamics of the moving
exciton in the neighborhood of the acceptor molecule is
extremely complicated. Our brief discussion focuses on the
persistence of a dipole-like stationary state in the presence
of DC-and AC-driving.

Finally, in Section 4, the role of long-range interaction in
the molecular system is investigated in the one-dimensional
case. Here, the nonlinear Schrodinger equation is aug-
mented by a non-local dispersion term. As a result station-

ary solutions can only exist in a bounded interval of the
excitation number in contrast to the usual NLS. Moving
solitons are shown to radiate. The faster the motion the
stronger is the radiation.

2. Noise and Damping

Following the derivation given in Ref [1], we start by
assuming that the coupled exciton-phonon system can be
described by the following pair of equations:

lhliln + Z Jml' l/In' + xun l/In = 07

Mﬁn + Mﬂ'i‘n + ng U, — Xl‘lln |2 = nn(t)'

@.1)

.2)

Here y,, is the amplitude of the exciton wave function corre-
sponding to site n and u, represents the elastic degree of
freedom at site n. Furthermore, —J,, is the dipole-dipole
interaction energy, x is the exciton-phonon coupling con-
stant, M is the molecular mass, A is the damping coefficient,
@, is the Einstein frequency of each oscillator, and #,(f) is an
external force acting on the phonon system. To describe the
interaction of the phonon system with a thermal reservoir at
temperature T, #,(t) is assumed to be Gaussian white noise
with zero mean and with the autocorrelation function

M OMu(£)) = 2MAky TO(t — ) 5 23)

in accordance with the fluctuation-dissipation theorem
ensuring thermal equilibrium.

In order to derive a single equation for the dynamics of
the exciton system, we start by writing the solution to eq.
(2.2) in the integral form

[o (eS¢~ — =Ny |y, () > + n,(t)]

u,(t) = uP (1) +

M@, —S.)
2.4
where
S.- 44 (g) W 25)
and
00 = g () + O — &)
+ u,(0)(S, 5+ — S_ 59}, (2.6)

Here u,(0) and #,(0) are the molecular displacements and
velocities at the initial moment of time. From eq. (2.6) we
observe that u{®(f) will decay as e~ /2", Since we will be
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interested in times such that ¢ > 2/ we can neglect this
transient term in eq. (2.4). Furthermore, using repeated
partial integration we can write

t
f d 2670 |y (1) 2
0

_ [_esw—w(Si G Sz o (|¢,(t')|2))]

dt’ eS (™ "—(Ill/.,(t)lz)

=t

sz (2.7)

The last term in eq. (2.7) can be neglected if |, (t)|* is
assumed to vary slowly enough with time compared with
the lattice vibrations, i.e., if

— (/1/ 2)2 1 dz .
[W.(0) 2 d? (1017 < L.

Neglecting all exponentially decaying transient terms, we
thus obtain an approximate expression for the molecular
displacements from eqs (2.4), (2.5) and (2.7):

(2.8)

s

Uy(t) = (Il//n( * — —2 d_t (1¥:(0) |2)> + 0,(0). (29)
Here o,(?), defined as
1 ‘ HaS+({E—t —@-t
o,(t) = 5.-5) L dr'(eS+ 07 — eS¢y, (1), (2.10)

is a new stochastic force described by noise which is not
white, but strongly colored [1].

Introducing the expression eq. (2.9) for the molecular dis-
placements into eq. (2.1), we immediately get the following
equation involving only exciton variables:

lh‘pn + z ']nn’ ‘pn’ + Vl‘pnlzllln

A d 2

—S V¥, = =0. 2.11
V oz ¥ g (VOP) + 1,09, =0 @11
Here we have introduced the nonlinearity parameter V
defined as

2

X
= . 2.12
M3 212)

By comparison with the derivation by Bang et al. [1], the
main difference is that we retain one more term in the
expansion eq. (2.7). The result of this is the presence of
the nonlinear damping term — V(4/wd),(d/dt)(|¥,(t)|?) in
the exciton eq. (2.11).

Making the additional assumption that y, varies slowly
in space and that only nearest-neighbor coupling J is of
importance, in the continuum approximation for the contin-
uous exciton field Y(x, y, t) = e~ */*"y (t)/l we obtain:

. A
i, + JPVY + VEIY Y =V 5 PY(Y ), + oy = 0.
0

(2.13)

Here, | is the distance between nearest neighbors, and o(x, y,
t) = a,(t)/I* is the noise density. Eq. (2.13) can be cast into a
more convenient form by transforming into dimensionless
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variables,

?—»x, y—»y, Jt/h—>t, [ l/l v, —a—»a (2.14)
This leads to

W, + VA + Y Py — AW Y P) + oy =0, (2.15)
where the nonlinear damping parameter A is given by
AJ
= h_w%,' (2.16)

It can easily be shown that in spite of the presence of the
nonlinear damping and multiplicative noise terms in eq.
(2.15), the norm, defined as

=jj|ll/(x, ¥, 8)|* dx dy

will still be a conserved quantity, having the value N = V/J
if the exciton wave function is assumed to be normalized in
the physical coordinates. By writing ¢ = ﬁe“’, the follow-
ing equations for the amplitude and phase of the solution
can be obtained from eq. (2.15)

2.17)

1
5n,+V°(nV0)=0,

—0,— An,— (VO)® +n+ % V(/n) +o(x, y,)=0. (2.18)
n

The norm conservation is immediately seen from the first of

these equations, while the second equation shows that the

role of the damping term is to destroy the phase coherence

of the solution and cause a diffusion-like behavior for the

phase. The ordinary NLS Hamiltonian, defined as

= [[(wotwnor-J e or Javan @19

will then in general no longer be conserved. Instead we find
that

- = Jja(x, » (¢ 1?), dx dy — 4 JJ((I‘PIZ)J2 dx dy.

(2.20)

Thus, the two terms provide energy input and energy dissi-
pation to the exciton system, making an energy balance pos-
sible. Consequently, there is a possibility for the system to
reach thermal equilibrium (see [4] for further discussion).

To investigate the influence on the collapse process of the
damping and noise terms in eq. (2.15), we will use the
method of collective coordinates. To this end a number of
simplifying assumptions are appropriate. We assume
isotropy, which effectively reduces the problem to one space
dimension with the radial coordinate r =./x2 + y*>. We
also assume that the noise o can be approximated by radi-
ally isotropic Gaussian white noise with autocorrelation
function

D,
{ao(r, tya(r, t)) = ~ o(r — Yot — t), (2.21)
where D, is the dimensionless noise variance. The validity of
this approximation was discussed in Ref. [1]. Finally, we
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Fig. 1. Width, B, as function of time ¢ in the absence of noise. Dashed line shows the analytical solution eq. (2.34) for I' = 0 with B, = | 4| = 1; solid line

the numerical solution of eq. (2.31) for I' = 0.1. From [4].

assume that the collapse process can be described in terms
of collective coordinates using the following self-similar trial
function for the exciton wave function yY(r, t):

W(r, £) = A(f) sech (ﬁt)) e, 2.22)

With its three real time-dependent parameters 4, B, and o
determining the amplitude, width, and phase of the wave
function, this trial function was used in Refs [2, 3] to inves-
tigate the case when A =0 in eq. (2.15). The choice of this
particular type of trial function can be motivated by regard-
ing it as a generalization of the approximate ground state
solution to the ordinary 2D NLS found by Anderson et al.
[11]. From the definition (2.17) of the norm, we immediately
obtain the relation between amplitude and width,

A(f) = v N/si,n

B0 (2.23)

where the coefficient s, , is obtained from the general defini-
tion

Spn = 2T J r™ sech™(r) dr. (2.24)
0

In [3] a variational approach was used, and from the Euler-
Lagrange equations the relation

_ B0

1) = 1800

(2.25)

was obtained together with an ordinary differential equation
for B(t). However, in the presence of damping (A # 0) this
technique is not applicable.

Instead, applying the virial theorem we will use the trial
function eq. (2.22) with a(t) given by eq. (2.25) to derive an

ordinary differential equation for B(t). Defining the virial
coefficient W as

W) = Jr2| Y, 0)]* dr=2n Jw 3y, 1) dr, (2.26)

using eq. (2.15) we see that it satisfies the equation
1d*w ®
1 dE = 2H — 2mA L 2|y 2oLy |* dr

+ 2% j r* |y *0,0 dr (2.27)
0
where H is the Hamiltonian eq. (2.19). Using eqs (2.22-2.25),

we arrive at the following differential equation for the width
B of the exciton wave function:

" B 8z (» r r
B3B=A—-T—-——— 1——=tanh|{—
a-T B 53,0 < B tan <B>>
x sech? (%)ar dr, (2.28)
where the constants A4 and I are defined as
4 Nsy 4
A=— — — =), 2.29
5.2 <S1,2 S1,4 2s1,2> ( )
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Fig. 2. Ensemble average of the width, {B), as a function of time ¢ for different noise variances. From bottom to top we have D =0, 0.05, 0.15, 0.5, 1.5,

and 12.5, respectively. In all cases B, = |4| = 1 and I" = 0.1. From [4].

and

8NA

§1,283,2

r= (2.30)

(53,4 — 53,6),

respectively. Note that 4 and I" depend on the initial condi-
tions via N, and that, while A can be either positive or nega-
tive, I' is always positive. In the absence of noise and
damping, it is evident from eq. (2.28) that collapse will occur
if and only if 4 < 0.

In analogy with the treatment for the undamped case in
Ref. [3], we find that it is possible to transform eq. (2.28)
into a simpler stochastic differential equation without
changing the Fokker-Planck equation for the system. This
equation, which therefore gives an equivalent description of
the process, attains the form

. A TB ht

B=2 T2 N0 @31)
where h(t) is white noise with the autocorrelation

Ch(h(t))y = 2Do(t — t). (2.32)

The parameter D, giving the variance of h(t), is related to the
variance D, of a(r, t) defined in eq. (2.21) through

327D,
=72

3,2

D

(2.33)

(53,4 — 83,6)-
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We now analyse the influence of damping and noise on
the collapse process by solving the ordinary stochastic dif-
ferential equation (2.31) for the width B of the trial function
(2.22) numerically. A detailed description of the numerical
approach can be found in [4]

With neither damping nor noise in the system
(' = D =0)and 4 < 0, the well-known exact solution

B(t)=B, [1— e ¢ =D 0 (2.34)
0 tg H c \/ﬁ,

fulfilling the initial conditions

B(0)=B,, B(0)=0 (2.35)

is easily obtained. Thus, the solution collapses and ceases to
exist at the collapse time ¢t = f,. When the damping term is
present in eq. (2.31) we find that strictly speaking no col-
lapse will occur, since the solution will be well-defined for all
t. Instead we find that B(¢) will approach zero exponentially
for large t,

B(t) ~e~(alim ¢ o0, (2.36)

so that the process can be considered as a collapse process
with an infinite collapse time. This type of behavior will be
called “pseudo-collapse”. The difference between the
damped and the undamped cases is illustrated in Fig. 1. As
can be seen, the initial stages of the pseudo-collapse process
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Fig. 3. The center of mass motion for a soliton obtained by direct numeri-
cal solution of Eq. (3.3) (solid line) and by solution of the separated equa-
tion of motion (indicated by triangles). From [6].

will resemble a pure collapse as long as the damping is
small. One can then roughly define a “pseudo-collapse-time”
as the time where the asymptotic behavior (2.36) sets in.

To illustrate how the noise affects the (pseudo-)collapse
process, we show the behavior of (B(t)) in Fig. 2 for the
parameter values B, = | 4| = 1, I' = 0.1, and different values
of the noise variance. It can be seen that for D < D, ~
0.15, the effect of the noise is to delay the pseudo-collapse in
terms of the ensemble average of the width, in analogy with
the similar result obtained in Ref. [2] for the undamped
case. For D > D_;,, we observe a non-monotonic behavior
of (B(t)). Initially, the average width will decrease in a
similar way as when D < D_,, but after some time <{B()>
will reach a minimum value and diverge as ¢t — co. This is
due to the fact that for D > D,,,, the noise is strong enough

B s5-
B2(t)

30

25

20

15+

10 1

5_

0 T T T T ]
0 2 4 6 8 t 10
Fig. 4. The width of the soliton is B(t), B, = B(0). Numerical solution of eq.
(3.3) using (3.5) (solid line) compared to analytical approach (dashed line).

From [6].
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Fig. 5. The real and imaginary parts of a dipole-like stationary state y(r, )
at an impurity. From [6].

to destroy the pseudo-collapse and cause dispersion for
some of the systems in the ensemble. As t — oo the dominat-
ing contribution to {B(t)) will come from the dispersing
systems for which B — oo, and consequently <{B(f))> will
diverge for D > D_,;,. As can be seen in Fig. 2 the minimum
value of (B(t)) will increase towards B, as D increases.

3. Impurity model

In this section we deal with soliton dynamics in the close
vicinity of an impurity. We consider the impurity potential
in the parabolic approximation and show that in this case
the center of mass motion and the internal motion decouple,
and using the lens transformation [6] one can reduce the
problem to an Ermakov—Pinney differential equation [12].

As in the previous section we restrict ourselves to the con-
tinuum limit. In this limit the problem may be approx-
imated by the two-dimensional nonlinear Schrodinger
equation with a spatially variable coefficient

iy, + JPV2Y + VI2 |y |2¥ = E(r)Y,

where, for the sake of simplicity, we shall assume that E(r) is
an axially symmetric Gaussian function

(3.1)

E(r) = E exp (—r?/r?), (3.2

where E is the strength of the impurity and r, is its radius.
Introducing dimensionless variables r/r, — r, t/(rah/I2J) — t,

V/J/J/(Vr3) — ¥, and E/(JI?/r3) - E we obtain
i, + VY + |y Py = E1 - )y

in the close vicinity of the impurity, since the impurity
potential E exp (—7%) ~ E(1 — r?). In this parabolic case the
motion of the center of mass of a soliton, R(t), and internal
degrees of freedom are separated, even when E = E(t). This
case is investigated in details in [6] using results for the
so-called Ermakov-Pinney equations. For combined DC

(3.3)
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Fig. 6. Relative oscillations of the absolute value of the real and imaginary
parts of the stationary state y(x, 0, ), at times ¢ = 30 (a) and 31 (b). From
[6].

and AC dependence

QZ
H0=—ﬂfﬂ+%cm90 (3.4)
we get the center of mass motion shown in Fig. 3 for Q, =
1.7, @ = 2Q,, and A = 0.1. In this case of parametric reso-
nance, the minimal width of the soliton B(f), obtained from
the numerical solution of eq. (3.3) by the relation

B(t) c I:J dr|y(r, 1) |4:| N

decreases rapidly as seen in Fig. 4. The agreement between
numerical and analytical results is good.

The soliton dynamics in the presence of the impurity is
very complicated. Thus a dipole-like nonlinear excitation
exists as the stationary state shown in Fig. 5. Here the dis-
tribution of the real and imaginary parts of the wave func-
tion yY(r, t) are depicted for E = 5.0, the norm N = 11.7, and
t = 40. The center of mass is constantly located at the impu-
rity at (x, y) = (0, 0). The oscillatory nature of the stationary
solution is illustrated in Fig. 6. For N = 11.7 this state exists
for E > E,;, ~ 4.5. For larger values of N of the initial data,
the threshold value for E, E,, also increases. This compli-
cated dynamics can also be analysed by applying the
method of collective coordinates [6, 7]. We use the test
function

el )

)

where p is the nonlinear frequency. p and —p are the posi-
tions of the extrema of the excitation, B is the common

(3.5)

r+p

— A —16(t)/2F
e ( .

(3.6)
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Fig. 7. Predictions obtained by method of collective coordinates, using the
test function given by eq. (3.6). Upper part: width, B, versus normalized
number n. Lower part: Half distance, p, between extrema of the stationary
dipole-like excitations versus n. From [6].

width of the pulses, and A4,(t), 4,(t), and é(¢) are the time
varying amplitudes and phase difference, respectively. As
common profile function, F(z), for the two pulses the Gauss-
ian F(x) = exp (—x?/2) is used. Figure 7 shows the resulting
width, B, and the distance, p, between the extrema. Because
of the presence of the impurity this oscillation persists for
normalized norm n = N/8z < 1. The predictions are in
good agreement with numerical solution of eq. (3.3).

4. Nonlocal dispersion

In this section we consider the dynamics of self-interacting
quasi-particles in one-dimensional systems with long-range
dispersive interactions. We take the matrix element of trans-
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fer, J(x), to be of the Kac-Baker form J(x) = J exp (—a|x]|)
with & being the inverse radius of interaction and J its inten-
sity. The equation of motion for the excitation wave func-
tion then becomes the nonlocal nonlinear Schrodinger
equation (Details are given in [5].)

0,y + j Joc =y, ) — Y(x, ) dy + [y Py = 0. (4.1)
The kernel J(x) in this integro-differential equation is the
Green’s function given by the equation (02 — a?)J(x) =
—2Jad(x). As a consequence eq. (4.1) may be rewritten as

: 2J o2
0.9+ o a— 32

The linear part of eq. (4.2) corresponds to the dispersion law
(k) = (2J/a)(k*/(e* + k?*)) [5]. When the characteristic
length scale of the excitations is large compared with the
radius of the dispersive interaction (ie., &« — o0, J — o0,
Joa~3 > const.), eq. (4.2) reduces to the NLS equation.
However, if the width of the excitations and the radius of
interaction, a1, are of the same order, the nonlocal effects
represented by the pseudo-differential operator in eq. (4.2)
become important.

Y+ 1y Py =0, 42

Rescaling variables z=oax, t©=Q2J/a)t, ¢(z, )=
J(@/20)Y(x, 1), instead of eq. (4.2) we obtain
2
i0,¢+1_’52¢+|¢|2¢=0, (4.3)
and
© ) az
J_w|¢(z, 7)| dz=§N=./V, 4.4

where N, the excitation number, like the Hamiltonian H is
an integral of motion. We look for stationary solutions to
eg. (4.3) in the form

b

=———— F(z, b) exp (A%t
6=y T B e (79
where A is a spectral parameter and with b = A"1 /42 + 1
being the width of the solution. Here F must satisfy
(d?/dz*)(F — F®) — Fb~2 + F*=0. Under the boundary
conditions F(£) —» 0 for £ - + oo this equation has the solu-
tion

. 2z\ F,+F,p(1—pu\3"
X — | =
P\% F,—F,u\1+pu

1 (b>+3 b* + 3\?
F2 - - _h2
1T ( s T ( 4 b
and u = (F7 — F?)Y2(F3 — F>)~'/2, The solution given by
eq. (4.6) exists only for b > 3(A? < %). Introducing eq. (4.6)
into eq. (4.4) we get

1 b>—9 (b*>+4b+3
N =———|3 In .
b2—1<b+ 8 <b2—4b+3
Figure 8 shows that the stationary solution exists only for
N K N o =~ 1.127685, or N < 2.25537Jo~ 2, Thus, in con-
trast to the usual NLS equation which has stationary solu-

tions for any excitation number, the nonlocal NLS equation
has stationary solutions only in a finite interval of A" € [0,

4.5)

(4.6)

4.7)
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Fig. 8. Excitation number, .4, versus spectral parameter, 4, for the station-
ary solutions. Dashed line: NLS equation. Solid line: nonlocal NLS, eq.
(4.3). The inset shows the two branches at the maximal excitation number.
The endpoint corresponds to the cusp soliton. From [5].

N max): N max tends to infinity in the limit of the usual NLS.
Figure 8 shows that, when the excitation number .4~ varies
in the interval [1.125, 4", ], there are two values of A for a
given A, i.e., two branches of stationary solutions exist in
that interval. The first branch corresponds to the part of the
A (A) for which dA"/dA >0, and it exists for any A <
N max- FOr N KN (A < 1/\/§) the solution reduces to
F= ﬁb_l sech (z/b) such that it coincides with the sta-
tionary solution of the usual NLS equation. The second
branch with d4"/dA < 0 exists only in the interval [1.125,
N maxls At N = N, = 1.125 we obtain from eq. (4.6) a
cusp soliton of the form ¢(z, ) = (3/8)"/* exp (i(z/8) — (1/3)
|z|). A similar solution was first found in the theory of
shallow water waves [13]. Recently such a solution was
obtained by Alfimov et al. [14] as a static solution of the
nonlocal Klein-Gordon equation. The needed stability
investigation is carried out in detail in [5], and the result is
that the stationary solution is unstable for (d.4#"/d4) < 0, i.e.,
the solitons of the second branch, and in particular the cusp
soliton, are unstable. Using a slightly perturbed stationary
solution of the two branches as initial condition the numeri-
cal integration of eq. (4.3) shown in Fig. 9(a) and (b) exhibits
oscillatory and blow-up behavior, respectively, as suggested
by the analysis in [5]. The oscillatory behavior indicates
stability of the soliton of the first branch.

Since the usual NLS equation is Galilean invariant the
solitons can move without changing their shape and veloc-
ity. This is not the case for the nonlocal NLS equation. To
investigate propagating solutions we introduce the moving
frame of reference in which the center of mass of the excita-
tionisatrest: E =z —wvr,T=1
(2, 7) = p(&, %) exp (% o + il + vzf), 438)
where v is the velocity. Applying this set of transformations
to eq. (4.3) we obtain for small velocities v

(1—)—(1+ivdy
1—ivd, — 0%

o ¢ +19l’p=0. 4.9)
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62
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0
-50

Fig. 9. Dynamical behavior of solutions to nonlocal NLS eq. (4.3) for
initial conditions given by eq. (4.6) with slightly perturbed amplitude. (top)
stable branch, 4 = 0.279; (bottom) unstable branch, 4 = 0.352. From [5].

Following Kuehl and Zhang [15] we rewrite eq. (4.9) using

the Fourier transform @*(k, 7) = J exp (ik&)p(&, 7) d¢,

i, o* (k, 7) — (k)" (k, 7) + NL(k, 7) = 0, (4.10)

where w,(k) = [A%(1 + k*) + (1 + vk)k*]/[1 — vk + vk*], the
dispersion law in the moving frame of reference, and

NL(k, %) = J exp (iké)| (¢, 7)|?@(&, 7) d¢ is introduced.
2000
1500 7 K
= a0 LS
> - iy
1000 Q37,7
2_
500 1 \ r ‘
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Fig. 10. Fourier spectrum of the moving soliton. Peak at k = 0 (soliton),
k =k, (radiation). Inset shows the resonant radiation wave number, ,,
versus —1/v, v being the soliton velocity: Solid curve eq. (4.14); Squares,
from numerical simulations of eq. (4.3). From [5].
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The equation (k) = 0 has the real root
241
v

k=k, ~

for small v. The existence of the root k = k, means [15, 16]
that a wave with wavenumber k, will be resonantly excited
by a soliton, forming an oscillatory tail.

Introducing @(¢, 7) = @o(8) + (&, 7), where @o(¢) exp
(iA%7) is the stationary solution given by eq. (4.5) and the
function f(£, 7) describes the change of the shape of the
soliton and the radiation, we get for the Fourier transform

of f(¢, 7)
i0:f" — o (k) f"

= (0,(k) — @, —o(k))p5(k) — f exp (ik&){d52f +*)

+ ¢o(f* + 21 1) + IfPf} d&.

In the resonant region k ~ k,, we neglect nonlinear terms
in eq. (411) and wuse o, k) ~vk—k,) (04k)
— w,-o(k)pi(k,) ~ —(A* + 1)¢§(k). Thus, returning to the
real space (&, 7), we obtain
10:f—1iv 0, f+ (vk, + 2¢3)f + ¢ f*

= —(4* + D¢i5(k)3(E). (4.12)
With the initial condition f(&, T =0) =0, the solution of
eq. (4.12) for k, > 1 becomes

4.11)

[ 7) = —ik, ¢g(k,) exp (—ix, O + v7) — 0(8),  (4.13)
where 0(z) is the Heaviside function and

1 ¢ 2(gr 4
K, =k, + oF L $o(&) A& (4.14)

is the effective resonant wavenumber. Thus, a moving
soliton stimulates radiation in the rear with a wavelength
proportional to the velocity v. The amplitude of the radi-
ation is proportional to ¢§(k,) and for small values of 4 (i.e.,
for small values of the excitation number /") it decreases as
exp (—(m/24v)). In Fig. 10 the Fourier spectrum of the pro-
pagating soliton is shown. The numerical simulations of the
dependence of the resonant wavenumber on the soliton
velocity are in reasonable agreement with our analytical
prediction.

5. Conclusions

The NLS systems with multiplicative noise, nonlinear
damping, impurities and non-local dispersion exhibit a
variety of interesting effects which may be useful for model-
ling the dynamical behavior of 1- and 2-dimensional
systems. In this paper we have considered only the contin-
uum approximation. Work on the corresponding discrete
system is reported in Ref. [17].
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