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Abstract

We investigate a soliton charge and energy transport in anharmonic molec-
ular systems and show that at large enough anharmonicity parameter there
are two kinds of envelope solitons, one of which is a Davydov soliton. It
has the usual one-bell shape and may exist at any anharmonicity. The
other kind has a two-bell shape. The two-bell shape is a bound state of
Davydov and Boussinesq solitons. It is caused by excitation (electron) tun-
nelling in the effective lattice potential.

1. Introduction

In the last few years an interesting branch of nonlinear
research has appeared: charge and energy transport in
highly anharmonic lattices. This direction is rather new
because until recently the main interest was in systems
where the interaction of charge or energy carriers with a
lattice is so weak or the elasticity of the lattice so strong,
that the lattice deformation caused by an electron or exciton
may be considered in the harmonic approximation. If the
anharmonic terms in the lattice potential are small enough
they do not play any esential role in the transport pheno-
mena determined by new nonlinear carriers like polarons,
solitons, charge—density waves etc. [1-3]. But if one is inter-
ested in transport phenomena in materials with a strong
carrier-lattice interaction and does not suppose that the
lattice is rigid (high-T. superconductors, molecular crystals
and aggregates, biological systems) or one studies a motion
of the lattice under extreme conditions (e.g. at supersonic
‘velocities) deformation can not be considered small and
anharmonic terms must be taken into account. For instance,
there is strong evidence [4, 5] that there is a correlation
between structural instability, high-anharmonicity of
oxygen-vibrations in high-T, superconductors and their
phase transition temperature. Anharmonic interactions play
a role in the dynamics of DNA and the possibility that they
might concentrate vibrational energy in DNA into soliton-
like objects was developed by several authors [6-11]. In
particular, modelling DNA as a Toda lattice with a trans-
versal degree of freedom the importance of nonlinear coup-
ling between longitudinal and transversal motion was
demonstrated [12-14].

Nonlinear lattice interactions also play an important role
in the supersonic soliton energy and charge transport in
molecular systems. As it is well known, the Davydov soli-
tion is a nonlinear excitation which is a result of interaction
of charge or energy carrier with acoustic phonons and its
velocity can not exceed the sound velocity of the crystal. To
overcome the velocity barrier one should take into account
an anharmonicity of the lattice. Recently this was done in
Ref. [15, 16] where the experiments on energy transfer in
Langmuir-Blodgett—Scheibe aggregates [17, 18], were dis-
cussed in terms of supersonic electronic excitations which
interact with Toda lattice solitons.

Anharmonic terms in the lattice potential as well as effects
of the acoustic phonon phase velocity dispersion were taken
into account in our recent paper [19], where we have shown
that the ultrasonic Davydov model reduces to the Hénon-
Heiles system [20]. We found a new family of elliptic soli-
tons which carry energy with a velocity exceeding the sound
velocity.

In the present paper we investigate envelope solitons in
an anharmonic lattice for arbitrary velocities. In the follow-
ing section we develop the dynamic equations for a
quantum particle (excitation or electron) interacting with
deformations of the crystal. The travelling wave assumption
leads to a generalized Hénon-Heiles system, which rep-
resents an effective mechanical system with two degrees of
freedom, but the kinetic energy of one of the degrees of
freedom is negative.

In Section 3 we investigate soliton solutions of the com-
pletely integrable case of the generalized Hénon—Heiles
system. We study the shape of the solutions and discuss
their physical meaning. We show that a new soliton state
may exist in anharmonic lattices: a bound state of Davydov
and Boussinesq solitons. It is caused by the excitation
(electron) tunneling in the effective two-well potential which
is created by the exciton (electron)-phonon interaction and
anharmonic terms in the lattice potential.

In Section 4 our calculations of soliton energies for the
completely integrable case are presented.

In Section 5 a variational approach is developed to study
the solitons in anharmonic lattices far from the completely
integrable case.
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In Section 6 the dynamical stability of the new two-
soliton state is tested by means of numerical simulations.
We show that a breather-like motion takes place in the
second kind of soliton state.

2. Davydov solitons in anharmonic lattice

Let us consider excitation energy transport in anharmonic
molecular crystals. Note that although we shall mainly talk
about energy transport, all our conclusions are also valid
for the transport of an excess electron [1]. The Hamiltonian
of the system has the form

H=-J Z (\P:(\Pn+1 + "I"n_l) — 2|\Il"|2)
. 2
+ XZ |‘I‘n|2(ﬁn+1 — Ba-y) +%Z (M<_‘2_lin_)

+ W(Bn+1 - ﬁn)z _§ aw(ﬂn+l - ﬂn)z)* (21)
Here W (2) is the excitation function of the molecule at site n,
B.(t) is the displacement of the nth molecule, J is the matrix
element of the excitation transition, the constant y charac-
terizes the exciton-displacement interaction, M is the mass
of a molecule, the parameters w and o characterize the elas-
ticity and anharmonicity of the lattice correspondingly.
The equations of motion for W (t) and S,(t) are

ih S W0 = Iy + ¥,y — 2,

+ X(‘sﬁn+l - Bn—l)lpn’ (22)
d’g,
ML s+ B = 2800~ olBrs — Ba0)
+ X0 W1 P = [y ). 23)

We shall seek solutions of eqs (2.2) and (2.3) in the form of
envelope solitons:

¥,(t) = 5Pl 1), BH) = B(nl, 1)

where K is the carrier wave vector, | denotes the lattice con-
stant and W(nl, t) as well as f(nl, t) are smooth functions of
the continuous variable x = nl. In this case eqs (2.2) and
(2.3) take the form

2

., 0 . 0 , 0
ih o ¥ = E(K)¥Y — ihv(K) o ¥ — J(K)I pwe b 4

+ou Py, 24)
0x
& 9 1 0%\ op
Moz b=15 {W<1 1! axz)la
9p)\2 ,
- aw(l 6x> + 2% } 25)

Here J(K) = J cos (KI), E(K) = 2(J(0) — J(K)) is the exci-
tation energy, v,(K) = (1/h)(dE(K)/dK) is the group velocity.
The term (I?/12)(0%/0X?) in the r.hs. of the eq. (2.5) takes
into account a dispersion of the acoustic phonon group
velocity.

The Hamiltonian (2.1) conserves the number of excita-
tions in the crystal. We shall assume that there is only one

Physica Scripta 51

excitation. Thus the normalization condition for the wave
function W(x, t) becomes

-;—fw dx|¥(x, ) = 1. (2.6)

We shall consider solutions of eqs (2.4) and (2.5) in the
form of travelling waves

H(x, 1) = (%)m SO h(0)
px, 0 =80, L= "D, e

where 6= (1/)(x —vt), v is the wave velocity, Q=
(1/2J(K)I*)(v — vg(K)) is the wave vector and Q is the carrier
frequency, @(6) is the envelope function, and u(f) is a strain
function. Inserting (2.7) into eqs (2.4) and (2.5) gives

¢ +2up — A9 =0, 2.8)
dz . 2 2
@(u—4cu+gu —¢*) =0, 29)
where the parameters 4, ¢ and g are given by
1 h2(v? — vX(K))
- 2V g
4=3K) (E(K) t k) )
2 1 K
c= 3("—2 _ 1), g = 2K (2.10)
Vo X

vy = l(w/M)'/2 is the sound velocity and the dots denote dif-
ferentiation with respect to 6. We want to consider both
supersonic and subsonic solitons. So, the sign of ¢ may
change: for supersonic solitons (v > v,) the parameter c is
positive and in the case of subsonic solitons (v > vo) it is
negative. We shall assume that the effective mass of excita-
tion is positive, ie. J >0 and consider the carrier wave
vectors K in the interval 0 < KI < IT/2.
Under the boundary conditions

i+ 00) = ii(+ 00) = #i(+ 00) = ¢(+ ) = P(+ ) =0
integrating eq. (2.9) twice with respect to 6 yields

i —4cu+gu> —¢*="U, (2.11)
where U = gu?(— 0) — 4cu(—o0) is the integration con-
stant. U = 0 if the boundaries of the crystal are free. U # 0
if an external force is applied at one of boundaries of the

crystal. We consider the case U = 0.
It is interesting to note that the set of equations

& +2up — Ap =0,

corresponds to a mechanical system with the Lagrange
function

—ii + 4cu — gu® + ¢* =0, (2.12)

L=T-V (2.13)
where

T = % (¢* —4?) (2.14)
is the effective kinetic energy and

V=- % Ad? + 2cu® + ¢*u — % gu® 2.15)
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is the potential function. We see from egs (2.13)—(2.15) that
Davydov solitons in an anharmonic lattice are described by
the Hénon-Heiles like Lagrangian. But in contrast to the
ordinary Hénon-Heiles system [20] the mass of one of the
degrees of freedom is negative in our case.

It is worth noting that eqs (2.4) and (2.5) as well as their
reduced form (2.8) and (2.9) have arisen already in the study
of nonlinear wave propagation in a plasma [21] and
diatomic chains [22]. In plasma  denotes the amplitude of
the Langmuir waves and f is the ion—density perturbation.
But in contrast with our case in plasma the parameter g has
a unique value: g = —6 [21]. In diatomic chains ¥ denotes
the amplitude of the optical vibrations and coupled nonlin-
ear equations for optical and acoustical degrees of freedom
coincide with eqs (2.4) and (2.5) except when the mass of
both particles in the effective kinetic energy is positive. We
shall show that this peculiarity: different signs of masses and
g > 0, influences the character of solitons in an essential
manner.

3. Completely integrable case of the supersonic soliton
problem

It is well known that the Hénon-Heiles system is not com-
pletely integrable [20]. However, in the following three
cases (i) A = 4c, g = 1 [23], (ii) 44 = ¢, g = 16 [24] and (iii)
g = 6 and arbitrary 4 and ¢ [25], it possesses a second inte-
gral of motion and in this way it is Lioville completely inte-
grable.

We consider here the third case, i.e. we shall assume that
there is a link 2aJ(K) = y between the anharmonicity con-
stant, a, the exciton—phonon constant, y, the matrix element
of excitation hopping, J and the carrier wave vector, K.
Note that for excitations with a large enough bandwidth:
2J > y/o we can always choose the wave vector K to satisfy
the above condition. We intend to investigate how the shape
and energy of solitons depend on their velocity. (Conditions
1 and 2 for integrability can only be fulfilled for one velocity
because the normalization condition imposes a link between
parameters A and c.)

Introducing the parabolic coordinates

¢ =2y, u=p+p,+c— A4 (3.1)

we obtain for the Lagrange function (2.13)-(2.15) with g = 6
the expression

Lo — L-z_l-z>_w 32
L 5 (#1 #2)<”2 123 i Hi i — 1, (3.2)
where

V) =2u(p — A + (4 — ). (33)

Using well known methods of analytical dynamics one can
obtain that the problem of supersonic Davydov solitons
reduces to the set of equations

du, dp,  do (3.4)

vV wiuy) B vV w(i,) B Apy — #2),

where w(u) = I,u® + I, 1 + 8uv(u), I, and I, being integra-
tion constants.
As mentioned above we are interested in the case where

(3.5)

¢, u—»0 at 66— too.
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In terms of parabolic coordinates (3.1) these boundary con-
ditions become ‘

(3.6)
or vice versa. Taking into account the boundary conditions

(3.6) one may conclude that I, = I, = 0 and egs (3.4) reduce
to

U =0, uyy—~A—c at - too

du

1
mpy — A+ WA —m

du 2 df

= 2 = .
u(y — A+ o)A — 1, (11 — 12)

Letting pu; =0 in eq. (3.7) (corresponding to a crystal
without high frequency excitations, ie. ¥, = 0), we obtain
the solution

¢ =0, u, =csech? . /c(0— 0,

which corresponds to the so-called Boussinesg-soliton [13].
This exists at supersonic velocities and represents a lattice
compression which moves along the chain without changing
its shape. 0, is an integration constant.

Letting u, = A — c in eq. (3.7) we obtain the solitonic
wave function, ¢(6), and deformation function u(f) in the
form

3.7

(3.8)

¢ = 2./A(A — c) sech \/A(0 — 6;) (3.9)
u = A sech? /A (6 — 6,). (3.10)

Note that u = ¢2/(4A4 — ¢)) only for g = 6. We see that this
solution coincides with subsonic Davydov solitons [26].
However, it exists both at subsonic (¢ < 0) and at supersonic
(c > 0) velocities. As in the subsonic case the excitation digs
a well (3.10) and moves through the crystal together with it.
We shall denote this solution a soliton of first kind.

In contrast to the first kind of solitons, a soliton of the
second kind exists at supersonic velocities ¢ > 0 (v > v,). Its
explicit shape can be obtained after a straightforward but
tedious integration of egs (3.7). As a result we get

¢ =2./A(A — )S™1(0) cosh \/c(6 — 6,), (3.11)
u= d—;z In S(6), (3.12)
where
S(0) = \/4 cosh (\/c(6 — 6,)) cosh (/A (8 — 6,))

— Je sinh (/c(6 — 6,)) sinh (/A0 - 6,),  (3.13)

0, and 6, being integration constants.

To obtain the parameter A that characterizes the soliton
carrier frequency Q, we use the normalization condition
(2.6). Inserting the wave functions (3.9) and (3.11) into eq.
(2.6) we get that for both types of solitons and for all inte-
gration constants 8, and 6,, the condition

JA[A =) = A, (3.14)
where A = 3%/J(K)w.
So, we see from eq. (3.14) that
2
Az3<”—‘2’—1)+—4—@ at v > vo, (3.15)
v \/§ v
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and at subsonic velocities v < vy, where only the first kind
soliton exists,

v?\ A?
A:<1+2—2)— at A <1 (3.16)
v§) 9
and
2
A~ A — 2(1 — F) at A > 1. (3.17)
0.

It is interesting to note that the deformation function,
(3.12), has the form of the two-soliton solution of the KdV-
equation [27] and can be approximately represented as

u(6) = c sech? [ /c(0 — 8,) — 6]
+ A sech? [\/A(6 — 6,) + 4] (3.18)

where 6 = tanh'l(\/c/_A). So we can conclude that the exci-
tation, ¢(0), is similar to that of a quantum particle moving
in two-well potential —2u(6) (see eq. (2.8) and Fig. 1). One of
the wells (first term in the r.h.s. of eq. (3.18)) is created by the
lattice soliton (3.8). The second is caused by the interaction
of the excitation with the lattice (second term in the r.hs. of
(3.18)). Part of the time the particle lives in the well that was
dug by itself then it tunnels to the well that was created by
the lattice soliton and so on. As a result of such a compli-

A.
Wave function

0.1

10 20

30
Distance

Distance
39

Effective
potential

Fig. 1. A: Wave function ¢(x) of the second kind of soliton and B: the
effective potential function —2u(x) for A = 1/16, C = 1/25 for different dis-
tances between Davydov and Boussinesq components of solition. a: 8, =
0,=0;b:0,=3,0,=0;c:0,=9,6,=0;d: 0, =15,0,=0.
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cated behavior we obtain a solitonic wave function ¢(6) in
the form of eq. (3.11) (see Fig. 1). It is interesting to remark
that at subsonic velocities v2 > v2[1 + (0.5A)?], the soliton
has a two-bell shape at any distance | #;, — 6, | between wells
in the potential —2u(f). However, the ratio between the
maximal values

®,/®, ~ sech /A0, — 0,) at. /A6, —0,)> 1.

Thus we may conclude that the major part of time the
excitation (or electron) in this case spends in the well that
was dug by itself. With an exponentially small rate it tunnels
to the other well.

4. Energy of solitons

To calculate the energies of solitons we introduce the trav-
elling wave functions (2.7) into the Hamiltonian (2.1). For
g = 6 we get

_ E
—J(K)
o o 4B 20+ 41 44D @)
where
1
eal9) = g (5~ E¥00).

is the exciton energy,

J‘ @©
-0

For the lattice soliton (3.8) we have

]

dbu(0).

92 = dop(0), i = f

— @

=0, i=uy,=2c 4.2)
and

2 4
Blan = 1 (1 +1s c)c /2 4.3)

This is the energy of the Boussinesq soliton.
In the case of the first kind of soliton, which is given by
egs (3.9) and (3.10), we obtain

E = 8A (normalization condition),

d=u =24 (4.4)
and its energy is given by the expression
= g,(v) + —— 2 1+4 A*"/z—iA 4.5)
Sex SA 10 ’

Substitution of the expressions (3.15)—(3.17) for the dimen-
sionless carrier frequency, 4, into eq. (4.5) yields

2 AZ
g=¢tv)—|1—1 2 — forv < vy (4.6)
54
and A< 1,
NEYEAS
& = E(V) + 48— | — for v> v,. 4.7
A \v,

We see from these expressions that at small velocities, the
soliton energy is less than the exciton energy. At high velo-
cities the situation changes: for v > v, the exciton becomes
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more stable than the soliton. At sound velocity

oy 3
& — Eox v=vo—2 IOA .
In Fig. 2(a)—(d) the energy difference ¢, — &, is plotted as a
function of the relative velocity u/v,. It is seen that the
supersonic soliton becomes energetically more favorable
only when the coupling constant A exceeds the critical value
A, = (20/3)*2.

For the soliton of the second kind we obtain from the
expressions (3.11)—(3.13) that

4.8)
4.9)

Thus the energy of the second kind soliton is a sum of the
energy of the first kind soliton (the Davydov component of
the second kind soliton) and the energy of the lattice soliton
(the Boussinesq component). In the case under consider-
ation, g = 6, the energy of the second kind soliton, ¢;;, does
not depend on the distance |6, — 6,| between the com-
ponents. However, as it will be shown below, this degener-
ation is not present for g # 6.

- _ _ 2 _
U=uy=ur+ thy, ¢5=238A

& = €1+ Ejay -

5. Variational approach

Assuming boundary conditions (3.5) the eigenvalue problem
(2.12) is equivalent to the following variational problem. The
functions ¢(0) and u(f) provide an extremum of the action

Energy difference b

0.027 //

Relative
velocity

-0.02

-0.061

»

1 Energy difference

"Q

0.2 0.4 0.6 0.8 1 1.2 1.4

Relative
ol velocity

Fig. 2. Energy difference between soliton and exciton for different values of
the coupling parameter A. a: A = 0.3, b: A = 2;¢c: A = (20/3)**;d: A = 25.
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functional

F= jw dOL(¢, u; ¢, 1) (5.1)

where the Lagrange function L(¢, u; ¢, %) is defined by the
egs (2.13)—(2.15). The eqgs (2.12) are in this way, the Euler-
Lagrange equations for the functional (5.1).

In applying of this approach to our problem we are
assuming that the shape of solitons in the case of arbitrary g
is described by functions which are similar to the solutions
of eq. (2.12) obtained in the completely integrable case
g = 6. Therefore to investigate the first kind of solutions we
employ the trial functions

5.2

where z and 7y are variational parameters and the normal-
ization condition (2.6) was taken into account. Introducing
the trial functions (5.2) into the functional (5.1) we get

&, = 2./72A sech (yz0), u = y* sech? (yf)

_8)(2 1s 3yl 2
F,—3{<3g 1>5y cy +2Ayz—3Ayz

x f d@ sech? (z6) sech? 9} + 4 AA. (5.3)
0

The extrema of the function (5.3) are determined by the
equations

z=6 f d68 sech? (z6) tanh 6 sech? 0, (5.9
o
(% g— l)v“ — 3y%c + Ayz?
=6 Ayz f df sech? 0 sech? (z6). (5.5)
0

The unique positive root of eq. (5.4) is z = 1 and eq. (5.5), as
well as the expression (5.3) for the action function, take the
form

2
(gg—l>'y3-3cy=3A, (5-6)
8[(2 1, 5 3.,
=—|{[Zg=1)=9°— —=A 4 AA. 5.7
Fy 3[<3 1>5v ey’ =5 A |+ (5.7

It is seen that the subsonic velocities (c < 0) the positive
root of the eq. (5.6) exists at any g. However, it exists at
supersonic (¢ > 0) velocities only if g > 3. Using the renor-
malization

9 g
A
2g—3c’ 29 —3

we obtain that y = 4 where 4 is a root of eq. (3.14) in which
A - A, ¢ — ¢. Thus we may conclude that in the framework
of our approach the shape of the first kind of solitons
changes drastically only at g~ 3. At g >3 the shape is
described by the functions (3.9) and (3.10) with parameters
renormalized according to the eq. (5.8).

It seems interesting to remark here that the parameter
25 — 1 has a clear physical meaning. Indeed, taking into
account the expressions (4.4) and (4.6) for the lattice distor-

A=

(5.8)

Cc=
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tion u; and soliton energy ¢; one can obtain that

2 Eanh
39 - 1=% 1
where E, = J(K)(A%/27) is the bound energy for an immobi-
le soliton (this energy was obtained by assuming that the
anharmonic term in the Hamiltonian (2.1) is absent), E,;, =
Law(Ju,/y)? is the anharmonic part of energy caused by cre-
ation of soliton. Thus the eq. (5.6) shows that one can expect
the existence of supersonic solitons only in such systems
where the soliton bound energy E, is small as compared
with the anharmonic energy E,; -

Let us consider now the second kind of solitons. To do it
we introduce the trial functions

®;; = 2,/7(y*> — B*) A cosh B(6 — R)/S(B, 7, R; 6)
2
d6?

S(B, 7, R; 0) =y cosh (y6) cosh (6 — R)
— B sinh (y6) sinh (6 — R)

where y, f(y > B) and R are variational parameters. Insert-
ing the functions (5.10) into eq. (5.1) we get that the func-
tional F can be represented as a sum

F=FI+Flatt+Fint'

(5.9)

In S(8, 7, R; 0), (5.10)

U =

(5.11)

Here, F, is the action for the first kind of soliton;

81 /2 1 3
3[(Go-1)5-er]
is the action for the lattice Boussinesg-soliton:

=0, up= ﬂz sech? (ﬁe),

and

(5.12)

Fraw =

Fu= 36~ 0f6" -

sech? (yx) dx 5
—» [y — B tanh (yx) tanh B(x — R)]?

x y’(* — B?) (5.13)
is the part of the total action which corresponds to the
interaction between the Davydov and Boussinesq com-
ponent of the soliton. Note that the parameter R denotes

the distance between the components. At small tanh (BR) eq.
(5.13) takes the form

X

B

Fia(R) = F;,(0) + g g—on° B(;) tanh® (BR) (5-14)

where the positive coefficient B(y) is defined by the expres-
sions

12(1 — atl—-n<1,
Bly) = ( 2rl) n
n atn < 1.

At large fR and f <y

Fipo= — g (g — 6)y*B? sech? (BR). (5.15)

Introducing the functions (5.13) into the Hamiltonian H
one can obtain that the energy of the second kind of soliton
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can be represented at arbitrary g as follows

1

e =2¢& + &aq + A Fine (5.16)
where

e =—(F,+16(1+5)y? (5.17)
1=8A\"! 3) ‘

is the energy of the Davydov component (the first kind of
soliton)

1 c
Elan = 'éz <Flalt + 16<1 + 3)/33)

is the energy of the Boussinesq soliton.

As it is seen from the egs (5.13)—(5.16) the Davydov and
Boussinesq solitons repel each other at g < 6 and the energy
(5.16) reduces to the sum ¢; + &,,. In the case g > 6 the
action (5.11) as well as the energy (5.16) is a function of R
and has a minimum at R = 0. We can therefore reach a con-
clusion that the second kind of soliton at g > 6 is a bound
state of the Davydov and Boussinesq soliton. The action
(5.11) in this case takes the form

(5.18)

4
Fy=F +F1m—§(g—6)7332 (519
for B < 7. The extrema of the function (5.19) are determined
by the equations

G-

2 1
(g g- 1)ﬂ3 — 3 =3 (-0

Forc—0

g—6 1/3 3 g—6 5/371-1_
B~ y, y|l—7l7—— A.

29—3 2\29-3
So the Boussinesq component does not disappear now at
the sound velocity. Moreover, in contrast with the case
g = 6, for g > 6 the second kind of soliton may exist both at
supersonic and subsonic velocities and for slow solitons e.g.

(v < vy) and A < 1 we obtain from the eqgs (5.20)—(5.21) that
6

1>y3 — 3¢y = % (g — 6)B%y + 3A, (5.20)

(5.21)

9 =2 a3,

A
yx—, B~

lel’ 9c*
Thus in the framework of our variational approach we may
conclude that in highly anharmonic systems where g > 6 (or
in other words, E,,, > 4E, (see eq. (5.9)) two kinds of
envelope solitons can exist: a Davydov soliton and a bound
state of Davydov and Boussinesq solitons.

6. Numerical results

The dynamical stability of states of the Davydov and Bouss-
inesq solitons was studied numerically. In our numerical
simulations we used periodic boundary conditions. For inte-
grating the egs (2.2) and (2.3) we used an eight order deter-
ministic Runge-Kutta Scheme (due to Dormand and Prince
[28] with a step size control). In terms of the dimensionless
time © = /(w/M)t our timestep was fixed at At =0.9-1.0
and the size of the system was 70 or 100 sites. The conserva-
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tion of the total energy of the system (up to 0.2%) and the
normalization condition (2.6) (up to 0.5%) kept control over
the accuracy of the numerical simulations. The imaginary
part of the energy, which can occur due to numerical inac-
curacies, was zero within an accuracy of 10~ '°. The solitary
excitations for simulations were created by placing the solu-
tion (3.11)—(3.13) in the chain and letting the system evolve.

The velocity v was chosen equal to the group velocity
vy(K): v = v(K). We investigate supersonic solitons and let
v(K) = 1.050o. We choose J = h, /(w/M) (it means that the
bandwidth of the excitation is in two times more than the
maximal value of the phonon energy) and A = 0.009.

In Figs 3(a)—(c) we plot the results of numerical simula-
tions for a subcritical value of the parameter g = 4.25. As an
initial state we choose a symmetric two-bell soliton. As time
increases, the distance between the bells increases and the
height of one of the bells decreases. A similar behavior is
observed for the depths of the wells in the —u, distribution.
So, in accordance with our analytical analysis, Davydov and
Boussinesq solitons repel each other and the bound state is
not formed.

In Figs 4(a)—(e) we present results for g = 8.5. As an initial
state we choose an asymmetric two-bell soliton. As time
increases the bells approach each other and their heights (as
well as the depths of wells) equalize. Afterwards the distance
between the bells increases and a mirror reflected asym-
metric two-bell soliton is created. Thus, in this case
Davydov and Boussinesq solitons form a bound state and
they behave more like a breather.

We see that the excitation (electron) really tunnels from
one well to another and this motion provides a stability of
the two soliton bound states.

It is worth to note also that the new bound state may be
influenced by an electromagnetic field in the frequency
region corresponding to the vibrations of the solitons near
their equilibrium position. In a later paper we shall discuss
this process in more detail.

7. Summary and conclusions

We have investigated a soliton energy (or charge) transport
in anharmonic molecular systems and found that when the
anharmonicity parameter g exceeds the critical value g, = 6
there are two kinds of envelope solitons: One is the usual
Davydov soliton. It has one-bell shape and may exist at any
g. A second kind has a two-bell shape. It is a bound state of
Davydov and Boussinesq solitons. We have demonstrated
that the latter kind is caused by the excitation (electron)
tunnelling in the effective two-well potential which is created
by the exciton (electon)-phonon interaction and anharmonic
terms in the lattice potential. The stability of the new soliton
state was proved numerically. We have showed that there is
a breather-like motion in the second kind soliton state.

The parameter g is defined as the ratio of a characteristic
anharmonic energy E,, and a bound energy of the
Davydov soliton E,:

To estimate this parameter for the case of Davydov vibra-
tional soliton motion in the alpha-helix molecule we have
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chosen an interatomic potential in the Lennard-Jones form

12 6
V =4¢ g — i
l+un+a—'un l+un+a_un

with parameters ¢ = 0.23N and ¢ = 4.01 A 1=45 A which
are fitted to bound energy and equilibrium distance in the
alpha-helix. From eq. (7.1) we get that the anharmonicity
parameter a = 2.3 A~'. For parameter values very often
used in  alpha-helix motion: J=97-10"%eV,
x=525-10"11N, M = 1.9 - 10" ** kg [29] we find that the
sound velocity is v, = 3.7 - 103ms ™!, the maximum group
velocity of the vibron excitation is v, = 1.4 - 10°ms~! and
g =0.8. Then we can conclude that the anharmonicity
parameter, «, and the group velocity of the vibron soliton,
v,, are too small to make a creation of the bound state of
the supersonic Davydov soliton and Boussinesq soliton pos-
sible. Collisions between the Davydov soliton and lattice
solitons in the alpha-helix were investigated in Ref. [30] and
it was shown that as a result of these collisions the Davydov
vibron soliton is destabilized.

Let us consider now the possibility of the coupling of
Davydov electrosoliton and Boussinesq soliton in the alpha-
helix. Davydov’s idea of the electrosoliton as a charge carrier
in polypeptide molecules is based upon the fact that the
peptide group (CONH) has a comparatively large static
dipole moment (about 3.46 D) and an extra electron can be
bound to it. The propagation of this electron is as men-
tioned above in many points similar to the excitations trans-
port but now J is the nearest neighbor electronic overlap
integral and y is a coupling electron-acoustic phonon con-
stant. The parameter y consists of two parts:

(71.1)

X=X+ Xs (12)

The first term (y.) in eq. (7.2) is caused by the Coulomb
interaction between an extra electron and static dipole
moments of the peptide groups. Estimates show [1, 31] that
X~ —7.5 - 107 '°N. The negative sign of the parameter y.
means that the Coulomb interaction leads to increasing dis-
tance between peptide groups. The second term in eq. (7.2)
arises from the dependence of the overlap integral J on the
distance ! between peptide groups

w=xk-J (7.3)

where the parameter x = —(d/dl) In J(I) characterizes the
pace of the overlap integral decrease with distance. In Ref.
[32] the value J = 0.3eV for a model polypeptide structure
was calculated. Taking for the parameter x values for the
interval (2, ..., 4 A~ we obtain from egs (7.2) and (7.3) that

§= k—1.6A°1=(04,..., 24)A .
Inserting this value together with the anharmonicity param-
eter a estimated above into the expression for the coupling
constant g we get that g > 12. Thus we arrive at the conclu-
sion that a bound state of a supersonic Davydov electro-
soliton and a lattice Boussinesq soliton can exist in
alpha-helix biopolymers.

It is worth to remark also that very often in molecular
conducting polymers only the part x; connected with the
overlap electronic integral contributes to the electron—
phonon coupling. This means that in this case the condition
for the existence of the bound state of supersonic electro-
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Fig. 3. (a)—(c): Numerical calculations of the excitation probability distribution, | ¥, |%, and molecular displacements, u,, for g = 4.25 at different moments
of dimensionless time. (a) T = 0, (b) T = 1500, (c) 3500.
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Fig. 4. (a)-(e): Numerical calculations of the excitation probability distribution, | ¥, |%, and molecular displacements, u,, for g = 8.5 at different moments
of dimensionless time. (a) T = 0, (b) T = 1500, (c) T = 3500, (d) T = 5400, () T = 6460.

soliton (acoustic polaron) with a lattice solitons takes very
simple form:

K < 20

In other words one can expect an existence of such a bound
state in anharmonic lattices with loose on-site electronic
states for which the overlap integral smoothly depends on
intersite distance.
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