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Examples of the most significant recent research in optics and engineering are
published each year in the December issue of OPN. This issue is comprised
of short descriptions of the "hottest" topics in current optics research. Selec-

tion criteria applied to submissions are as follows:
• the accomplishments described must have been published in a refereed journal

in the year prior to publication in OPN;
• the work must be illustrated in a clear, concise manner, comprehensible to the

at-large optics community;
• the topical area as a whole must be described, and the importance of the

research must be detailed.
There are no requirements in the selection process for inclusion of specific top-

ical areas. When a large number of submissions are received for a specific area, this
is taken as evidence that the topic has been fertile ground for activity and research
over the course of the preceding year. OPN strives to ensure that engineering, sci-
ence, and technology are all represented. The number of papers accepted overall is
limited by space.

With 33 papers accepted, 2000 has proven to be another successful year. OPN
and OSA would like to thank the hundreds of researchers from all over the world
who submitted summaries to Optics in 2000.
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Guiding Mechanism In Photonlc Crystal Fibers Figure 1. Modal dispersion curve
for some donor-guided modes for three different defect radii. In all cases, the air-
filling fraction of the PCF structure is f = (2ir/)3)(a/A)2, where A denotes the
pitch between consecutive holes.

ing mechanism is attributed to the inhibition of trans-
verse radiation produced by the forbidden band of the
photonic-crystal cladding. This mechanism is referred
to as photonic bandgap guidance (PEG).

We accomplished an in-depth study of the guiding
mechanism of PCFs. We introduced an irregularity in a
perfectly periodic triangular structure of circular air
holes (of radius a) by decreasing or increasing the size
of the central hole (of radius b). The sign of the local
variation of the refractive index determines the charac-
ter of the defect, which acts as a donor impurity in an
electron crystal for a positive index variation (b < a) and
as an acceptor impurity for a negative index variation
(b > a). For an acceptor defect (b > a), the localization
mechanism causes a state to leave the upper conduction
band and to enter the forbidden band located just
below, as in a honeycomb PCF.

Alternatively, if we decrease the size of the defect
(b < a), guided modes are promoted into the forbidden
bands from neighboring conduction bands. However,
unlike in the acceptor defect case, these guided modes
originate in the immediately lower conduction bands.
We have recognized several configurations in which
guided modes appear simultaneously in both the upper
and the lower forbidden bands of the triangular pho-
tonic crystal,5 as shown in Fig. 1.

In light of the existence of these donor configura-
tions that simultaneously present intraband and nonin-
traband guided modes, it seems unnatural to interpret
PCF guidance by invoking two different physical princi-
ples to occur in the same structure at the same time.
This is especially true when these guided modes are
simultaneously promoted into the upper and the lower
forbidden bands by an identical mechanism. In view of
these results, we conclude that the guiding mechanism
in PCFs is always provided by a unique phenomenon of
multiple interference by the periodic structure, which
does not distinguish between upper and lower forbid-
den band guidance.
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Nonlinear Localized Modes
In Photonic Crystal Waveguides
By Serge F. Mingaleev, Yuri S. Kivshar, Rowland A.
Sammut
Photonic technology, by use of light instead of relatively
slow electrons as the information carrier, is increasingly
being proposed as a replacement for electronics in com-
munication and information management systems.
Among the most promising optical materials for achiev-
ing this goal are photonic bandgap crystals, in which
periodic modulation of a dielectric constant control-
lably prohibits electromagnetic propagation throughout
a specified frequency band.1 Recent dramatic success in
fabrication of photonic crystals with a bandgap at opti-
cal wavelengths2 renders investigation of their proper-
ties a central problem.

Of special interest among the devices for microscopic
light manipulation which have been proposed on the
basis of photonic bandgap materials are carefully engi-
neered line defects which could act as waveguides inside
all-optical microchips. Very recently, Tokushima et aL3

demonstrated highly efficient propagation of 1.55 u,m
wavelength light through a 120° sharply bent waveguide
formed in a triangular lattice two-dimensional (2D)
photonic crystal.

But to employ the high-tech potential of photonic
crystal waveguides, it is important to achieve a dynami-
cal tunability of their properties. This idea can be real-
ized by changing the light intensity in the case of pho-
tonic crystals composed of a material with a nonlinear
response* or photonic crystals with embedded nonlinear
impurities. In this case the high-intensity light can prop-
agate through the waveguide in the form of nonlinear
localized mode.5

For instance, let us consider a 2D photonic crystal
created by a square lattice of parallel, infinitely long
dielectric rods in air, with a waveguide created by insert-
ing an additional row of rods (the top view of such a
structure is depicted at the top of Fig. 1). If the rods are
fabricated from a Kerr-type nonlinear material, the elec-
tromagnetic field can be localized in the waveguide direc-
tion, totally due to the nonlinearity. At the top of Fig. 1
we plot the electric field E of the corresponding nonlin-
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Nonlinear Localized Modes Figure 1. Electric field distribution of the nonlinear
localized mode excited in the photonic crystal waveguide (top) and the depen-
dence of the mode power on the frequency (bottom). The mode is unstable in the
shaded region due to the effctive nonlocal Interaction between waveguide rods.

ear localized mode. The most important physical charac-
teristic of such a mode is its power Q (which is closely
related to the mode energy) depicted at the bottom of
Fig. 1 as a function of the mode frequency (all the fre-
quencies in Fig. 1 lie inside the bandgap). Importantly,
stability of such a localized mode is determined by the
slope of the dependence Q(w): the mode is stable when
this slope is negative and unstable otherwise. One can
see that there is an interval of the mode power Q where
two stable nonlinear localized modes of different shape
and frequency can coexist. As we show in Ref. 5 this
bistability phenomenon occurs as a direct manifestation
of the nonlocality of the effective (linear and nonlinear)
interaction between the defect rods which form the
waveguide.
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PROPAG/HING FIELDS i
Modulation Instability of Spatially
Incoherent Light Beams and Pattern
Formation in Incoherent Wave Systems
By Detlef Kip, Marin Soljacic, Mordechai Segev, Evge-
nia Eugenieva, and Demetrios N. Christodoulides
Modulation instability (MI) is a universal process that
appears in most nonlinear wave systems in nature.
Because of MI, small amplitude and phase perturba-
tions (from noise) grow rapidly under the combined

•effects of nonlinearity and diffraction (or dispersion, in
the temporal domain). As a result, a broad optical beam
(or a quasi-cw pulse) disintegrates during propagation,
leading to filamentation or to break up into pulse trains.
MI is generally considered as a precursor to solitons,
because the filaments (or pulse trains) that emerge from
the MI process are actually trains of almost ideal soli-
tons. Over the years, MI has been systematically investi-
gated in connection with numerous nonlinear process-
es. Yet, it was always believed that MI is inherently a
coherent process and thus can appear only in nonlinear
systems with a perfect degree of coherence. Earlier this
year, however, we theoretically demonstrated1 that MI
can also exist in relation with partially incoherent wave
packets or beams.

MI in nonlinear incoherent environments reveals
several new features that have no counterpart in coher-
ent wave systems. The most important new features are
as follows. (1) The existence of a sharp threshold for
nonlinear index change, below which perturbations
(noise) on top of a uniform input beam decay and
above which a quasi-periodic pattern forms. (2) The
threshold depends on the coherence properties of the
input beam: the threshold increases with decreasing cor-
relation distance (decreasing spatial coherence). The
intuition behind these features and the fundamental dif-
ference between MI in coherent and in incoherent wave
systems can be understood in the following manner. A
small periodic perturbation on a coherent beam
remains periodic and maintains its modulation depth
during linear diffraction. Thus, any self-focusing non-
linearity, no matter how small, increases the modulation
depth and leads to instability, which is why coherent MI
has no threshold. On the other hand, a perturbation on
an incoherent beam diminishes its modulation depth
during linear diffraction. The nonlinearity has to over-
come this washout effect to gain instability, which is
why incoherent MI has a threshold: it occurs only if the
nonlinearity is strong enough to overcome the diffusive
washout caused by diffraction. Furthermore, the more
incoherent the beam, the higher the MI threshold.

Recently, we made the first experimental observation
of incoherent MI.2 We showed that, in a nonlinear par-
tially coherent system (a nonlinear system of weakly
correlated particles), patterns can form spontaneously
(from noise) when the nonlinearity exceeds the thresh-
old, and a periodic train of one-dimensional filaments
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