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A guided-mode scattering matrix approach to photonic crystal integrated devices, based on the expansion of
the electromagnetic field in Wannier functions is presented and its applicability to large-scale photonic circuits
is demonstrated. In particular, we design two components typically used in wavelength division multi/
demultiplexing applications, namely, a directional coupler and a Mach—Zehnder interferometer, and we ana-
lyze the transmission spectra as a function of the coupler length and/or delay line length, respectively. These
examples demonstrate that by cascading basic functional elements, large-scale circuits can be accurately de-
scribed and efficiently designed with minimal numerical effort. © 2008 Optical Society of America
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1. INTRODUCTION

Photonic crystals (PhCs) [1], periodic nanostructured di-
electric materials with periodicities on the order of the
wavelength of light, are ideal candidates for integrated
all-optical devices. By introducing line defects,
waveguides can be created within the photonic bandgap
of the underlying PhCs. Furthermore, in contrast to
index-guided optical elements, light can be guided around
sharp bends [2] over broad frequency ranges, due to the
vanishing photonic density of states in the surrounding
PhC.

Over the past decade, extensive studies have been car-
ried out about different types of basic functional elements
(FEs) built into 2D PhCs. The potential for broadband
single-mode waveguides [3] and bends [4,5], as well as for
more complex devices, such as directional couplers (DCs)
[6,7] and Mach—Zehnder interferometers (MZIs) [8,9], has
been demonstrated. In addition, various concepts for ac-
tive tunability have been proposed [10-13].

Although many of these studies have been targeted at
characterizing defect structures in the very specific envi-
ronment of a 2D PhC, most calculations were done using
all-purpose techniques, such as the finite-difference time-
domain (FDTD) method, finite element methods, or beam
propagation methods. While these methods are very pow-
erful for structures with an arbitrary distribution of di-
electric material, they lose some efficiency in highly or-
dered structures such as PhCs, since they do not exploit
the symmetry properties and band structure of the under-
lying PhC. Furthermore, the simulation of large-scale de-
vices is very memory and/or time consuming, especially in
the case when slow light regimes [8] are involved in one of
the components.

In this paper, we propose a guided-mode scattering-
matrix approach for the efficient treatment of PhC cir-
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cuits and demonstrate its applicability to large-scale cir-
cuits. The approach extends the concepts presented in
[14]; it relies on the efficient calculation of the scattering
matrices (S-matrices) of certain basic FEs of a circuit
such as bends or coupler end points via the Wannier-
function technique [15]. Each S-matrix contains ampli-
tude and phase information of how the corresponding FE
relates waveguiding modes in the different device ports to
each other. Therefore, similar to impedance matrices in
microwave engineering, the circuit S-matrix of a complex
device can then be computed through the combination of
S-matrices of the basic FEs. As a result, this approach
scales favorably with circuit size.

2. MODEL SYSTEM

To be specific, we consider a 2D macroporous silicon PhC
host material (refractive index n=3.46) with pores of ra-
dius r=0.45a arranged on a triangular lattice (lattice con-
stant a) [16]. For H-polarized radiation, i.e., when light
with the magnetic field polarized along the pore axis
propagates in the plane of periodicity, this system exhib-
its a large bandgap (Aw/w.=49% relative to the center
gap frequency w,.) in the frequency range wa/2mc=a/\
=[0.298,0.490]. FEs may be created by infiltrating single
pores with low-index materials such as polymers or liquid
crystals with typical refractive indices in the range of n
=1.5,...,1.7 [17].

For instance, a single-mode waveguide in the frequency
range a/\=[0.357,0.407] with a bandwidth of Aw/w,
=13% can be created by filling a row of pores with a poly-
mer of refractive index n=1.7. In Fig. 1, we compare the
resulting waveguide dispersion relations computed
within the Wannier-function approach with supercell cal-
culations based on a plane wave expansion [18]. Very good
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Fig. 1. (Color online) Model system: 2D macroporous silicon
PhC with pores of r=0.45a arranged on a triangular lattice. A
large bandgap (Aw/w,=49%) exists for H-polarized light. Within
the gap, the waveguide dispersion is shown for a line of pores
filled with a low-index material of refractive index n. The disper-
sion calculated with the Wannier-function technique (WF; sym-
bols) is compared with results from plane-wave based supercell
calculations (PWE; curves). We are mostly interested in the
single-mode frequency range below the cutoff frequency of the al-
most flat dispersion branch, i.e., a/\=[0.357,0.407] for n=1.7.
The corresponding propagating waveguide mode exhibits even
symmetry (lower right panel).

agreement between the two methods is found except for
frequencies close to the upper band edge. There, the
waveguide modes become very extended in the lateral di-
rection so that the plane wave expansion (PWE) calcula-
tions for the resulting very large unit cells become less re-
liable.

3. SCATTERING-MATRIX FORMALISM

A photonic circuit consists of a number of waveguide ports
for incoming and outgoing signals and is fully character-
ized by its S-matrix, which relates amplitudes and phases
of incoming to outgoing guided modes in the waveguide
ports. The S-matrix contains all relevant information
about the reflectances and transmittances as well as the
phase relations between mode amplitudes in the different
ports.

The direct computation of a large-scale circuit S-matrix
is numerically expensive if not impractical due to the
large system size. The basic idea behind the S-matrix ap-
proach is to split a large circuit into certain basic FEs,
such as bends, and to interconnect them via waveguides
of variable lengths. This principle is depicted in Fig. 2.
The S-matrices of the individual FEs can be computed
with much less effort as compared to the full circuit
S-matrix. Once they are obtained, the full S-matrix of the
entire circuit is easily calculated for any lengths of the
waveguides connecting the individual basic FEs. Thus,
length-dependent characteristics of the circuit can be eas-
ily computed. This provides a very powerful design tool
for PhC circuits. At this point, we would like to note that
the guided-mode S-matrix approach has been developed
and is widely used in high-frequency electrical engineer-
ing to characterize and design microwave circuits [19].

A. Scattering Matrix of Individual Functional

Elements

The wave equation for H-polarized fields in 2D systems
reads
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e(r)

where Vo= (d,,d,) is the gradient in the 2D plane. To solve
Eq. (1) for defect structures in PhCs, we expand the mag-
netic field H, into Wannier functions [15]. This localized
function basis is derived from the Bloch modes of the un-
derlying PhC by a lattice Fourier transform. Therefore,
the Wannier-function basis contains all information about
symmetries and bandgaps of the PhC; it is orthonormal
by construction, and it acquires certain translational
properties. For instance, the Wannier function W, 5(r), la-

1 w?
[V2‘_V2+c_2]Hz(f)=0, (1)

beled by lattice vector R and band index n, is identical to
the Wannier function W,5(7-R), which is centered at the

unit cell around the origin and has been shifted by R.
These properties make the Wannier basis ideally suited to
describe localized defect modes in the perturbed PhC.

In Fig. 3, we display the 26 maximally localized photo-
nic Wannier functions that have been employed in order
to achieve converged results in all computations dis-
played in this paper (cf. Fig. 1 for a quantitative compari-
son of waveguide dispersion relations with plane-wave
based supercell calculations). To the best of our knowl-
edge, these Wannier functions represent the first maxi-
mally localized and PhC-symmetry compliant Wannier
functions for H-polarized radiation for groups of noniso-
lated (entangled) bands. Details about their generation
can be found in [20].

To simplify the notation, we introduce a composite in-

dex ﬁ:{n,}%} that labels the Wannier functions. The ex-
pansion H,(r)=3gHzW4(r) inserted into Eq. (1) leads to
the system of equations

> M, 4(w)Hg=0. @)
B

The matrix M ,5(w) contains frequency-independent over-
lap matrix elements of the Wannier functions with re-
spect to the full dielectric function e(r)=e¢,(r)+ de(r), thus
including contributions mediated by the unperturbed
PhC, €,(r), and the deviation from periodicity brought
about by the FE, Se(r) (see [15] for more details). The fre-
quency enters these equations as a parameter only.

Any functional element is divided into two regions: the
waveguiding region, () (union of all port regions), where
the field can be described by incoming and outgoing
guided modes G}"*"'(7) =3 ;G "W4(7) (I=1,...,N)), and

Fig. 2. (Color online) Principle of the S-matrix formalism: a
large-scale circuit is divided into basic FEs that are each de-
scribed by their individual S-matrices. Typically, the same FEs
appear multiple times in different orientations, and their
S-matrices can be reused. The complex MZI circuit depicted
above is composed of only two basic FEs.
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Fig. 3. (Color online) Maximally localized photonic Wannier
functions related to the 26 lowest bands of the model system.
Each Wannier function is labeled by its band index n. The Wan-
nier functions associated with bands 4-9, 10-15, and 18-23 can,
respectively, be obtained from the three representative functions
shown in the center of the figure through five successive 60° ro-
tations. For instance, the set of Wannier functions 4-9 forms a
sixfold star, where each spike of the star is identical to the (suit-
ably rotated) Wannier function shown. For the parameters of the
model system, we refer to Fig. 1.

the central region of the device, (1, where the scattering
of incoming into outgoing modes takes place (see Fig. 4).
The guided modes in the waveguiding region Qy can ei-
ther be propagating or evanescently decaying into or
away from the device. They are consecutively labeled over
all waveguides. Thus, in the case of equal ports, each of
them having n; incoming and n; outgoing modes, the
guided modes in port 1 that propagate or grow into the
same direction are indexed by [=1,...,n;, those in port 2
by l=n;+1,...,2n;, and so on, with N;=Nj¢s-n;. This
compact notation avoids an additional notational over-
head related to summations over the ports of the FE.

The S-matrix relates the incoming modes with mode
amplitudes a; to the outgoing modes with mode ampli-
tudes b,. Therefore, in Eq. (2), we replace the unknowns
Hp in the waveguide region Qy with these guided-mode
amplitudes, a; and b;. Next, we separate the contributions
involving incoming amplitudes a; from those involving
outgoing amplitudes b; and the central region Wannier co-
efficients H g, and move them on the right hand side of the
system of equations,

00 ¢ &
0000000000
Fig. 4. (Color online) Division of a given FE into two regions,
and Q. In the waveguiding region, Qy (shaded), the electromag-
netic field can be described by incoming and outgoing guided
modes and, therefore, the Wannier coefficients Hy; can be re-
placed by guided mode amplitudes, @; (incoming) and b; (outgo-
ing), in that region.
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Finally, by choosing the incoming field amplitudes a;= g;;
with an arbitrary but fixed value j e[1,N;], and solving
Eq. (3) for the corresponding outgoing field amplitudes b;,
we obtain one column of the S-matrix, S;j=b;. The full
S-matrix is computed by repeatedly solving Eq. (3) for all
incoming field conditions j=1,...,N;.

B. Reduced Scattering Matrix

The waveguides connected to the ports of an FE usually
support only a few propagating guided modes; the vast
majority of guided modes is evanescent. These evanescent
modes play an important role in the near field of struc-
tures that break the translational symmetry of the wave-
guide. In addition, they are necessary to correctly de-
scribe field components that evanescently decay away
from defect structures. Therefore, we have to take them
into account when computing the S-matrices of individual
FEs.

On the other hand, outgoing evanescent field compo-
nents die out very rapidly away from the FE and, there-
fore, have only negligible overlap with fields in a neigh-
boring FE, once the FEs are sufficiently far separated.
For the computation of the circuit S-matrix, it is, there-
fore, possible to work with reduced S matrices of indi-
vidual FEs, in which only the propagating modes are re-
tained after the S-matrix has been computed with the
help of all modes (see also [14] for a detailed discussion of
this issue with an illustrative example). For instance, for
the waveguide bend shown in Fig. 6, i.e., for two-port FEs
with single-mode waveguide ports, the reduced S-matrix
is a 2X2-matrix. Similarly, for the coupler end point
shown in Fig. 7, i.e., a three-port device with two single-
mode waveguide ports and one dual-mode waveguide
port, the reduced S-matrix is a 4 X 4 matrix.

C. Congruence of Functional Elements

The S-matrix of an FE depends on the position of the
ports and the scatterers in the FE relative to each other,
but it does not depend on the orientation of the FE as a
whole (including ports) within the background PhC. For
instance, the bend shown in Fig. 6 exhibits the same
S-matrix as a bend that is rotated by 60°.

In general, we can say that all FEs that are congruent
(i.e., that can be transformed into each other by transla-
tions, rotations, and mirror reflections) possess the same
S-matrix, provided that the guided modes in the ports of
two congruent FEs are mapped exactly onto each other by
the congruence transformation. In our model system, the
single propagating guided mode in the single-mode wave-
guide is even under a mirror reflection at the plane along
the line defect (see Fig. 1) and is mapped onto itself for
any possible congruence transformation of the bend in
Fig. 6. Therefore, all congruent bends have the same
S-matrix.

The situation is similar for the coupler end point shown
in Fig. 7. However, the mapping of the guided modes in
the dual-mode waveguide (port 3) is more complex, i.e.,
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the two guided modes may be swapped by certain congru-
ence transformations (for instance by a glide reflection at
the central axis of the dual-mode waveguide). Therefore,
the S-matrices of two congruent coupler end points may
differ in the ordering of rows and columns.

Nevertheless, by carefully taking into account the
above symmetry considerations, we can save a major
amount of computations when analyzing a complex circuit
such as the MZI depicted in Fig. 2. The two basic FEs that
constitute this circuit, i.e., the waveguide bend and the
coupler end point, have to be calculated only for one spe-
cific orientation. The S-matrices for all other orientations
can then be derived according to the congruence rules de-
scribed above. Therefore, in this specific example, four out
of six S-matrix computations can be saved. In addition,
we would like to note that a comparison of the S-matrices
for simple FEs that have been obtained numerically for
two equivalent orientations provides a very stringent test
on the quality of the Wannier functions used in the calcu-
lations.

D. Scattering-Matrix Combination

Each individual FE has a number of ports, where each
port exhibits a certain number of channels, i.e., modes
supported by the corresponding waveguide. When con-
necting two FEs, the resulting combined FE inherits the
“exterior” ports of the two FEs, i.e., the ports that are not
involved in the connection. The “interior” ports, i.e., those
ports that are part of the connection between the indi-
vidual FEs, are eliminated in such a way that the cou-
pling of the two FEs is correctly accounted for in the com-
bined S-matrix. Figure 5 illustrates the general procedure
of combining S-matrices of different FEs. The combined
S-matrix is calculated after the scheme

Scombined = Se,e + Se,i(T - Si,i)_lsi,e' (4)

Here, the S-matrices on the right hand side are as-
sembled from blocks of the S-matrices S and S’ of the in-
dividual FEs. We have introduced composite symbolic in-
dices, “e¢” for exterior and “i” for interior ports. For
instance, S, ; includes all entries of S and S’ that connect
incoming modes in interior ports with outgoing modes in
exterior ports. In the example in Fig. 5, these are the sub-
matrices S14, So4, S34, S1/9, and S3,. See, Sij, and S,
are constructed similarly from blocks of S and S’ that

waveguide

Fig. 5. (Color online) Illustration of how to connect two indi-
vidual FEs with S-matrices S and S’ to form a more complex FE.
The interior ports 4 and 2’ are eliminated, while the exterior
ports 1, 2, 3, 1’, and 3’ form the new ports of the combined FE.
The length of the waveguide connecting the two FEs appears as a
phase factor in the switching matrix 7'. In addition, the switching
matrix accounts for the potential mode mismatch in the case of
when waveguides at ports 4 and 2’ are different.
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connect incoming/outgoing modes in interior/exterior
ports, respectively. The switching matrix 7" contains all
information about the guided-mode mismatch at the inte-
rior ports and the phase shifts due to a certain length of
the waveguide section that connects the two devices. In
the simplest situation when there is no mode mismatch at
the interior ports of the two devices, i.e., when the con-
necting waveguide fits to both interior ports, the switch-
ing matrix T takes the form of a reflectionless S-matrix
and contains only exponentials of the guided-modes’
phase shifts over the length of the waveguide. The DC in
Fig. 8 is an example for the simplest case of two connected
FEs with no mismatch at the interior ports.

As alluded to above, for sufficiently well separated FEs,
only the S-matrix blocks for propagating modes are taken
into account. As a result, the individual S-matrices are
very small (2 X 2 for the waveguide bend and 4 X 4 for the
coupler end point in our case), so that Eq. (4) can be
evaluated with minimal effort.

Finally, the successive application of this scheme to all
connections in a circuit allows the computation of the cir-
cuit’s full S-matrix. Thus, large-scale circuits can be built
up easily, as soon as all S-matrices of the basic building
blocks have been determined. Adding one more FE to an
existing circuit requires only one additional application of
Eq. (4).

4. BASIC FUNCTIONAL ELEMENTS

For the DC and MZI circuits presented in Section 5, we
require only three basic FEs: the waveguide bend, the
coupler end point, and the delay line transition. Below, we
discuss each of them in detail.

A. Waveguide Bend

This functional element occurs in almost every circuit. It
is essential for the performance of the circuit to avoid in-
ternal reflections, which compromise or even destroy the
functionality of the circuit. Therefore, we optimize the
simple bend so that it has minimal reflection over a given
frequency range under the given design degrees of free-
dom (Fig. 6). The optimization procedure is analogous to
that employed in [21,22] for different devices in the case
of E-polarized light. In the present case, we allow a set of
3 X 3 pores in the bend region that are either unfilled or
filled with a low-index material with variable refractive
index.

B. Coupler End Point

The directional coupler described in Subsection 5.A can be
split into two equivalent end points that are connected
over a coupling section with two parallel waveguides (see
Fig. 8). The coupler end point (Fig. 7) is the region where
the two waveguides (ports 1 and 2) approach each other
and end up parallel to form the coupling section (port 3,
multimode waveguide). The performance of this FE, de-
picted in Fig. 7, is clearly influenced by the optimized
bend, which is incorporated into the lower waveguide arm
to decrease reflections.
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Fig. 6. (Color online) Reflectance of waveguide bends in the
model system. The FE was optimized with respect to minimal to-
tal reflectance in the frequency range a/A=[0.370,0.390]. A set of
3 X 3 pores was chosen, into which different low-index materials
with refractive indices of n=1.55, 1.60, 1.65, and 1.70 were al-
lowed to be infiltrated, indicated by numbers from 1 to 4 in the
lower right panel, which depicts the optimized design. Only sym-
metric configurations with respect to a mirror reflection on the
plane bisecting the angle enclosed by the bend were scanned.
Consequently, the reflectance spectra of (1+4)%=15,625 configu-
rations were computed. The left panel shows the reflectance of
the simple (dashed curve) and the optimized design (solid curve).
The two vertical dashed lines mark the frequencies of minimal
reflectance of the optimized design (a/A=0.373 and 0.384). These
lines are repeated in all the subsequent spectra in this paper.

C. Delay Line Transition

For an MZI circuit, it is necessary to introduce controlled
phase shifts, e.g., to incorporate a delay line of a certain
length into one arm. Such a delay line can be a slightly
modified waveguide with a different dispersion relative to
the reference waveguide in the second arm. As with the
DC, we split the delay line into two congruent FEs: the
transition to the delay line waveguide and the transition
back. These are connected via a variable-length wave-
guide section. If the index change in the delay line wave-
guide relative to the reference waveguide is sufficiently
weak, and the transitions are sufficiently smooth, the re-
flectance at the transitions is small enough for all fre-
quencies of interest, so that the whole delay line can be
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©08f — T, Qentries) ]
g 2
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€
0041
c
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. .
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3
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240’ VY
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b
0.36 0.37 0.38

frequency a/A

Fig. 7. (Color online) Coupler end point design (right panel) and
its spectral performance (left panel). The FE consists of two
single-mode waveguide ports (1 and 2) on the left and one dual-
mode waveguide port (3) on the right. Undesirable reflectances
have been reduced by utilizing the optimized design of the wave-
guide bend (see Fig. 6).
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approximately treated as an ideal phase shifter, albeit
with modified dispersion, which accounts for the phase
shifts relative to the MZI’s second arm. In the MZI pre-
sented in Subsection 5.B, an index ratio of n4ejayline: ref
=1.65:1.70, and a transition region of two holes filled
with materials of intermediate refractive index (n=1.667
and 1.683) is sufficient to reduce the reflectance at the de-
lay line to less than 2% for all frequencies above a/\
=0.368. Nevertheless, in our computations, we treat the
delay line transitions exactly, i.e., as full-fledged FEs on a
par with bends and coupler end points.

5. LARGE-SCALE PHOTONIC CRYSTAL
CIRCUITS

The basic FEs described above may now be combined to
construct more complex PhC-based circuitry. As an illus-
tration, we design PhC-based DCs and MZIs, which could
be useful in many WDM and sensing applications.

A. Directional Coupler

By combining two opposite coupler end points with a suf-
ficiently long straight section between them (see Fig. 8),
we can construct a DC of a certain length, i.e., a device
consisting of two waveguides that come close to each
other so that the fields can couple in a section of certain
length.

The working principle of the DC is the following: in the
coupling section, the two aligned single-mode waveguides
form a dual-mode waveguide that supports an even and
an odd propagating guided mode with respect to a certain
symmetry of the system. In our case, this symmetry is a
glide reflection, i.e., a reflection on the plane equidistant
from both single-mode waveguides in combination with a
translation of a/2 in the waveguide direction. These
modes propagate with different wave vectors kqy., and
koaq, respectively. Due to mode beating, the resulting field
shifts periodically in space between the two single-mode
waveguides with a period of Lp=27/|keyen—Fkoadl, called
beat length. Thus, if the coupler length L is equal to Lp
(or a multiple of it), light launched into one of the
waveguides exits in the same waveguide (bar state), while
if the coupler length is half the beat length (or an odd
multiple of it), the light is completely coupled over to the
other waveguide (cross state).

Fig. 8. (Color online) Directional coupler built into a PhC. It is
decomposed into two coupler end points with a variable length
waveguide between them (shaded region). Only the S-matrix of a
single coupler end point and the (simple) switching matrix of the
connecting dual-mode waveguide have to be computed for all fre-
quencies of interest to allow design studies with couplers of any
length.
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Fig. 9. (Color online) Length dependence of the reflectances and
transmittances of the DC shown in Fig. 8 for a fixed frequency
a/N=0.373.

Owing to the simple form of the switching matrix for
this system, which only contains exponentials of the
guided-modes’ phase shifts over the length of the dual-
mode waveguide, the entire design can be derived from
only the guided modes of the single-mode and the dual-
mode waveguide and the S-matrix of one coupler end
point for all frequencies of interest. The length depen-
dence of the DC for any frequency is then easily com-
puted, since—for a given frequency—this only involves
the combination of 4 X4 S-matrices by means of Eq. (4).

Figure 9 shows the length-dependent performance of
the DC for the fixed frequency a/\=0.373. The DC nicely
shows the behavior described above. The “bar transmit-
tance” T3 and the “cross transmittance” T4 alternate;
the reflectances (including the “cross reflectance” R;3) are
below 1072, There is a slight asymmetry between T3 and
T4, which stems from the asymmetry created by the
bends in the lower coupler arm. From Fig. 9, we can esti-
mate the beat length to be Lp=95a. This is in very good
agreement with the expected value of Lp=27/|keyen
—koqql =94.1 derived directly from dispersion data.

Due to the wavelength dependence of the beat length
Lg(\), the frequency spectrum of the fixed-length DC (Fig.
10) shows an oscillating behavior of the transmittances in
frequency regions where the reflectances (“backreflec-
tances,” R{; and Ry, as well as “cross reflectance”, Ri9)
are small. In other regions the device performance is
mainly governed by Fabry—Perot oscillations due to the

reflectance / transmittance

0.36 0.37 038 0.39 0.4
frequency a/A

Fig. 10. (Color online) Reflectance/transmittance spectrum of a

fixed-length DC as shown in Fig. 8 with L=97a. For this length,

the DC is in the bar state for a/\=0.373 and in the cross state for

a/N=0.384.
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nonnegligible reflectances and resonant behavior com-
pletely destroying the characteristic features of a DC. The
frequency region of acceptable performance can be identi-
fied as a/\ €[0.368,0.390].

B. Mach-Zehnder Interferometer

In the next step we combine two DCs by connecting them
via two separate arms, see Fig. 11. We may incorporate a
delay line into one arm by using a different low-index ma-
terial (n=1.65 instead of n=1.7) to fill a certain number of
pores in that arm. Such an MZI circuit can be the starting
point for well-known wavelength flattening techniques to
facilitate WDM applications [23,24].

To address this type of circuit, we require the
S-matrices of the coupler end point, the waveguide bend,
and the delay line transition described above. All these
functional elements are small compared to the size of the
entire circuit. Then, we are completely free to choose the
two DC lengths L, and L, as well as the length of the MZI
arms and the delay line length Lj,.

First, we consider the balanced MZI with two equal
arms. In Fig. 12 we display the performance of this cir-
cuit. It is apparent that such a balanced MZI is equiva-
lent to a DC with effective length L=L+L,. This can be
seen by comparing Figs. 10 and 12.

By incorporating a delay line into one arm, we can
achieve an MZI with nonzero relative phase shifts A¢ be-
tween the waveguides in the two arms. The change of A¢
with frequency depends strongly on the length of the de-
lay line and the index difference between the two arms.
The delay line can be properly designed so that the phase
shift is 2nm, n e N\ for one frequency w, and (2n+1)7 for
a different frequency w,. The spectrum for this case is
shown in Fig. 13. As compared to the balanced MZI (Fig.
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Fig. 11. (Color online) MZI consisting of two DCs of lengths L;
and L, connected via two separate arms. In one arm a delay line
of length Ly, is realized by filling the pores with a different poly-
mer with n=1.65.
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Fig. 12. (Color online) Spectrum of the MZI depicted in Fig. 11
with L,=L,=49a without a delay line (both arms have the same
optical length). This balanced MZI acts as a DC of length L,
+L,=98a. Compare with Fig. 10.
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Fig. 13. (Color online) Spectrum of the MZI depicted in Fig. 11
with L;=L,=49a and a delay line of variable length Lp=17a
(solid curves), 10a (dashed curves) and 6a (dotted curves). For
Lp=17a, the relative phase shift approximately corresponds to
A¢p=0 at a/\=0.373 and A¢p=m at a/A=0.384. For shorter delay
lines, it is still zero at a/\=0.373, but takes some value 0 <A¢
< at a/A=0.384. Compare with the balanced MZI case (A¢$=0
at all frequencies) in Fig. 12.

12), the MZI with delay line exhibits a large bar transmit-
tance 713 at the frequency a/\=0.384, while T3 is zero
for that frequency in the balanced MZI. By using actively
tunable materials such as liquid crystals or materials
with intensity-dependent refractive index to create the
delay line, this functionality can be used as a switch or
modulator device.

6. SUMMARY

In this paper, we have introduced a Wannier-function
based guided-mode S-matrix formalism for the design of
complex PhC circuitry. We have applied the formalism to
the realistic case of H-polarized light in macroporous sili-
con, where the FEs are created by single-pore infiltration
with low-index materials (see [17] for the first experimen-
tal realization of such a system). By calculating
S-matrices of small “basic” FEs, which act as building
blocks, we can efficiently treat large and complex photonic
circuits via an S-matrix combination. This approach
scales much better than all-purpose techniques such as
FDTD, and allows detailed design studies of large-scale
circuits such as the directional coupler and MZI, which
we have analyzed.

On the “lattice level” of PhCs, the Wannier function
method allows efficient calculation and optimization of
the S-matrices of basic FEs. It is capable of accurately
treating the amplitude and phase of S-matrix entries.
This is crucial for the correct treatment of circuits consist-
ing of cascades of several basic FEs, such as MZI circuits.
The efficiency of the Wannier-function approach in the re-
verse design of basic FEs has been demonstrated before
[21,22], and in the present paper we have applied this ap-
proach to waveguide bends for H-polarized radiation in
2D macroporous silicon PhCs.

While the focus of the present paper has been on the
design of large-scale devices, we would like to note
that—to the best of our knowledge—this paper presents
the first successful quantitative application of maximally
localized photonic Wannier functions for H-polarized ra-
diation in 2D PhCs. In addition, the extension of the

Hermann et al.

Wannier-function based guided-mode S-matrix approach
to 3D PhCs does not provide conceptual difficulties.
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