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Wannier-function based scattering-matrix
formalism for photonic crystal circuitry
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A guided-mode scattering matrix approach to photonic crystal integrated devices, based on the expansion of
the electromagnetic field in Wannier functions is presented and its applicability to large-scale photonic circuits
is demonstrated. In particular, we design two components typically used in wavelength division multi/
demultiplexing applications, namely, a directional coupler and a Mach–Zehnder interferometer, and we ana-
lyze the transmission spectra as a function of the coupler length and/or delay line length, respectively. These
examples demonstrate that by cascading basic functional elements, large-scale circuits can be accurately de-
scribed and efficiently designed with minimal numerical effort. © 2008 Optical Society of America
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. INTRODUCTION
hotonic crystals (PhCs) [1], periodic nanostructured di-
lectric materials with periodicities on the order of the
avelength of light, are ideal candidates for integrated
ll-optical devices. By introducing line defects,
aveguides can be created within the photonic bandgap
f the underlying PhCs. Furthermore, in contrast to
ndex-guided optical elements, light can be guided around
harp bends [2] over broad frequency ranges, due to the
anishing photonic density of states in the surrounding
hC.
Over the past decade, extensive studies have been car-

ied out about different types of basic functional elements
FEs) built into 2D PhCs. The potential for broadband
ingle-mode waveguides [3] and bends [4,5], as well as for
ore complex devices, such as directional couplers (DCs)

6,7] and Mach–Zehnder interferometers (MZIs) [8,9], has
een demonstrated. In addition, various concepts for ac-
ive tunability have been proposed [10–13].

Although many of these studies have been targeted at
haracterizing defect structures in the very specific envi-
onment of a 2D PhC, most calculations were done using
ll-purpose techniques, such as the finite-difference time-
omain (FDTD) method, finite element methods, or beam
ropagation methods. While these methods are very pow-
rful for structures with an arbitrary distribution of di-
lectric material, they lose some efficiency in highly or-
ered structures such as PhCs, since they do not exploit
he symmetry properties and band structure of the under-
ying PhC. Furthermore, the simulation of large-scale de-
ices is very memory and/or time consuming, especially in
he case when slow light regimes [8] are involved in one of
he components.

In this paper, we propose a guided-mode scattering-
atrix approach for the efficient treatment of PhC cir-
0740-3224/08/020202-8/$15.00 © 2
uits and demonstrate its applicability to large-scale cir-
uits. The approach extends the concepts presented in
14]; it relies on the efficient calculation of the scattering
atrices (S-matrices) of certain basic FEs of a circuit

uch as bends or coupler end points via the Wannier-
unction technique [15]. Each S-matrix contains ampli-
ude and phase information of how the corresponding FE
elates waveguiding modes in the different device ports to
ach other. Therefore, similar to impedance matrices in
icrowave engineering, the circuit S-matrix of a complex

evice can then be computed through the combination of
-matrices of the basic FEs. As a result, this approach
cales favorably with circuit size.

. MODEL SYSTEM
o be specific, we consider a 2D macroporous silicon PhC
ost material (refractive index n=3.46) with pores of ra-
ius r=0.45a arranged on a triangular lattice (lattice con-
tant a) [16]. For H-polarized radiation, i.e., when light
ith the magnetic field polarized along the pore axis
ropagates in the plane of periodicity, this system exhib-
ts a large bandgap (�� /�c=49% relative to the center
ap frequency �c) in the frequency range �a /2�c�a /�
�0.298,0.490�. FEs may be created by infiltrating single
ores with low-index materials such as polymers or liquid
rystals with typical refractive indices in the range of n
1.5, . . . ,1.7 [17].
For instance, a single-mode waveguide in the frequency

ange a /�= �0.357,0.407� with a bandwidth of �� /�c
13% can be created by filling a row of pores with a poly-
er of refractive index n=1.7. In Fig. 1, we compare the

esulting waveguide dispersion relations computed
ithin the Wannier-function approach with supercell cal-

ulations based on a plane wave expansion [18]. Very good
008 Optical Society of America
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greement between the two methods is found except for
requencies close to the upper band edge. There, the
aveguide modes become very extended in the lateral di-

ection so that the plane wave expansion (PWE) calcula-
ions for the resulting very large unit cells become less re-
iable.

. SCATTERING-MATRIX FORMALISM
photonic circuit consists of a number of waveguide ports

or incoming and outgoing signals and is fully character-
zed by its S-matrix, which relates amplitudes and phases
f incoming to outgoing guided modes in the waveguide
orts. The S-matrix contains all relevant information
bout the reflectances and transmittances as well as the
hase relations between mode amplitudes in the different
orts.
The direct computation of a large-scale circuit S-matrix

s numerically expensive if not impractical due to the
arge system size. The basic idea behind the S-matrix ap-
roach is to split a large circuit into certain basic FEs,
uch as bends, and to interconnect them via waveguides
f variable lengths. This principle is depicted in Fig. 2.
he S-matrices of the individual FEs can be computed
ith much less effort as compared to the full circuit
-matrix. Once they are obtained, the full S-matrix of the
ntire circuit is easily calculated for any lengths of the
aveguides connecting the individual basic FEs. Thus,

ength-dependent characteristics of the circuit can be eas-
ly computed. This provides a very powerful design tool
or PhC circuits. At this point, we would like to note that
he guided-mode S-matrix approach has been developed
nd is widely used in high-frequency electrical engineer-
ng to characterize and design microwave circuits [19].

. Scattering Matrix of Individual Functional
lements
he wave equation for H-polarized fields in 2D systems
eads

ig. 1. (Color online) Model system: 2D macroporous silicon
hC with pores of r=0.45a arranged on a triangular lattice. A

arge bandgap ��� /�c=49% � exists for H-polarized light. Within
he gap, the waveguide dispersion is shown for a line of pores
lled with a low-index material of refractive index n. The disper-
ion calculated with the Wannier-function technique (WF; sym-
ols) is compared with results from plane-wave based supercell
alculations (PWE; curves). We are mostly interested in the
ingle-mode frequency range below the cutoff frequency of the al-
ost flat dispersion branch, i.e., a /�= �0.357,0.407� for n=1.7.
he corresponding propagating waveguide mode exhibits even
ymmetry (lower right panel).
��2 ·
1

��r��
�2 +

�2

c2 �Hz�r�� = 0, �1�

here �2���x ,�y� is the gradient in the 2D plane. To solve
q. (1) for defect structures in PhCs, we expand the mag-
etic field Hz into Wannier functions [15]. This localized
unction basis is derived from the Bloch modes of the un-
erlying PhC by a lattice Fourier transform. Therefore,
he Wannier-function basis contains all information about
ymmetries and bandgaps of the PhC; it is orthonormal
y construction, and it acquires certain translational
roperties. For instance, the Wannier function WnR� �r��, la-
eled by lattice vector R� and band index n, is identical to
he Wannier function Wn0��r� −R� �, which is centered at the
nit cell around the origin and has been shifted by R� .
hese properties make the Wannier basis ideally suited to
escribe localized defect modes in the perturbed PhC.
In Fig. 3, we display the 26 maximally localized photo-

ic Wannier functions that have been employed in order
o achieve converged results in all computations dis-
layed in this paper (cf. Fig. 1 for a quantitative compari-
on of waveguide dispersion relations with plane-wave
ased supercell calculations). To the best of our knowl-
dge, these Wannier functions represent the first maxi-
ally localized and PhC-symmetry compliant Wannier

unctions for H-polarized radiation for groups of noniso-
ated (entangled) bands. Details about their generation
an be found in [20].

To simplify the notation, we introduce a composite in-
ex �= �n ,R� 	 that labels the Wannier functions. The ex-
ansion Hz�r��=
�H�W��r�� inserted into Eq. (1) leads to
he system of equations



�

M�����H� = 0. �2�

he matrix M����� contains frequency-independent over-
ap matrix elements of the Wannier functions with re-
pect to the full dielectric function ��r��=�p�r��+���r��, thus
ncluding contributions mediated by the unperturbed
hC, �p�r��, and the deviation from periodicity brought
bout by the FE, ���r�� (see [15] for more details). The fre-
uency enters these equations as a parameter only.
Any functional element is divided into two regions: the

aveguiding region, 	W (union of all port regions), where
he field can be described by incoming and outgoing
uided modes Gl

in/out�r��=
�G�l
in/outW��r�� �l=1, . . . ,Nl�, and

ig. 2. (Color online) Principle of the S-matrix formalism: a
arge-scale circuit is divided into basic FEs that are each de-
cribed by their individual S-matrices. Typically, the same FEs
ppear multiple times in different orientations, and their
-matrices can be reused. The complex MZI circuit depicted
bove is composed of only two basic FEs.
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he central region of the device, 	D, where the scattering
f incoming into outgoing modes takes place (see Fig. 4).
he guided modes in the waveguiding region 	W can ei-
her be propagating or evanescently decaying into or
way from the device. They are consecutively labeled over
ll waveguides. Thus, in the case of equal ports, each of
hem having nl incoming and nl outgoing modes, the
uided modes in port 1 that propagate or grow into the
ame direction are indexed by l=1, . . . ,nl, those in port 2
y l=nl+1, . . . ,2nl, and so on, with Nl=Nports·nl. This
ompact notation avoids an additional notational over-
ead related to summations over the ports of the FE.
The S-matrix relates the incoming modes with mode

mplitudes al to the outgoing modes with mode ampli-
udes bl. Therefore, in Eq. (2), we replace the unknowns

� in the waveguide region 	W with these guided-mode
mplitudes, al and bl. Next, we separate the contributions
nvolving incoming amplitudes al from those involving
utgoing amplitudes bl and the central region Wannier co-
fficients H�, and move them on the right hand side of the
ystem of equations,

ig. 3. (Color online) Maximally localized photonic Wannier
unctions related to the 26 lowest bands of the model system.
ach Wannier function is labeled by its band index n. The Wan-
ier functions associated with bands 4–9, 10–15, and 18–23 can,
espectively, be obtained from the three representative functions
hown in the center of the figure through five successive 60° ro-
ations. For instance, the set of Wannier functions 4–9 forms a
ixfold star, where each spike of the star is identical to the (suit-
bly rotated) Wannier function shown. For the parameters of the
odel system, we refer to Fig. 1.

ig. 4. (Color online) Division of a given FE into two regions, 	D
nd 	W. In the waveguiding region, 	W (shaded), the electromag-
etic field can be described by incoming and outgoing guided
odes and, therefore, the Wannier coefficients H� can be re-

laced by guided mode amplitudes, al (incoming) and bl (outgo-
ng), in that region.


��	D

M��H� + 

��	W

M��

l=1

Nl

G�l
outbl = − 


��	W

M��

l=1

Nl

G�l
inal.

�3�

inally, by choosing the incoming field amplitudes al=�lj
ith an arbitrary but fixed value j� �1,Nl�, and solving
q. (3) for the corresponding outgoing field amplitudes bl,
e obtain one column of the S-matrix, Slj=bl. The full
-matrix is computed by repeatedly solving Eq. (3) for all

ncoming field conditions j=1, . . . ,Nl.

. Reduced Scattering Matrix
he waveguides connected to the ports of an FE usually
upport only a few propagating guided modes; the vast
ajority of guided modes is evanescent. These evanescent
odes play an important role in the near field of struc-

ures that break the translational symmetry of the wave-
uide. In addition, they are necessary to correctly de-
cribe field components that evanescently decay away
rom defect structures. Therefore, we have to take them
nto account when computing the S-matrices of individual
Es.
On the other hand, outgoing evanescent field compo-

ents die out very rapidly away from the FE and, there-
ore, have only negligible overlap with fields in a neigh-
oring FE, once the FEs are sufficiently far separated.
or the computation of the circuit S-matrix, it is, there-

ore, possible to work with reduced S matrices of indi-
idual FEs, in which only the propagating modes are re-
ained after the S-matrix has been computed with the
elp of all modes (see also [14] for a detailed discussion of
his issue with an illustrative example). For instance, for
he waveguide bend shown in Fig. 6, i.e., for two-port FEs
ith single-mode waveguide ports, the reduced S-matrix

s a 2
2-matrix. Similarly, for the coupler end point
hown in Fig. 7, i.e., a three-port device with two single-
ode waveguide ports and one dual-mode waveguide

ort, the reduced S-matrix is a 4
4 matrix.

. Congruence of Functional Elements
he S-matrix of an FE depends on the position of the
orts and the scatterers in the FE relative to each other,
ut it does not depend on the orientation of the FE as a
hole (including ports) within the background PhC. For

nstance, the bend shown in Fig. 6 exhibits the same
-matrix as a bend that is rotated by 60°.
In general, we can say that all FEs that are congruent

i.e., that can be transformed into each other by transla-
ions, rotations, and mirror reflections) possess the same
-matrix, provided that the guided modes in the ports of

wo congruent FEs are mapped exactly onto each other by
he congruence transformation. In our model system, the
ingle propagating guided mode in the single-mode wave-
uide is even under a mirror reflection at the plane along
he line defect (see Fig. 1) and is mapped onto itself for
ny possible congruence transformation of the bend in
ig. 6. Therefore, all congruent bends have the same
-matrix.
The situation is similar for the coupler end point shown

n Fig. 7. However, the mapping of the guided modes in
he dual-mode waveguide (port 3) is more complex, i.e.,
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he two guided modes may be swapped by certain congru-
nce transformations (for instance by a glide reflection at
he central axis of the dual-mode waveguide). Therefore,
he S-matrices of two congruent coupler end points may
iffer in the ordering of rows and columns.
Nevertheless, by carefully taking into account the

bove symmetry considerations, we can save a major
mount of computations when analyzing a complex circuit
uch as the MZI depicted in Fig. 2. The two basic FEs that
onstitute this circuit, i.e., the waveguide bend and the
oupler end point, have to be calculated only for one spe-
ific orientation. The S-matrices for all other orientations
an then be derived according to the congruence rules de-
cribed above. Therefore, in this specific example, four out
f six S-matrix computations can be saved. In addition,
e would like to note that a comparison of the S-matrices

or simple FEs that have been obtained numerically for
wo equivalent orientations provides a very stringent test
n the quality of the Wannier functions used in the calcu-
ations.

. Scattering-Matrix Combination
ach individual FE has a number of ports, where each
ort exhibits a certain number of channels, i.e., modes
upported by the corresponding waveguide. When con-
ecting two FEs, the resulting combined FE inherits the
exterior” ports of the two FEs, i.e., the ports that are not
nvolved in the connection. The “interior” ports, i.e., those
orts that are part of the connection between the indi-
idual FEs, are eliminated in such a way that the cou-
ling of the two FEs is correctly accounted for in the com-
ined S-matrix. Figure 5 illustrates the general procedure
f combining S-matrices of different FEs. The combined
-matrix is calculated after the scheme

Scombined = Se,e + Se,i�T − Si,i�−1Si,e. �4�

ere, the S-matrices on the right hand side are as-
embled from blocks of the S-matrices S and S� of the in-
ividual FEs. We have introduced composite symbolic in-
ices, “e” for exterior and “i” for interior ports. For
nstance, Se,i includes all entries of S and S� that connect
ncoming modes in interior ports with outgoing modes in
xterior ports. In the example in Fig. 5, these are the sub-
atrices S14, S24, S34, S1�2�

� , and S3�2�
� . Se,e, Si,i, and Si,e

re constructed similarly from blocks of S and S� that

ig. 5. (Color online) Illustration of how to connect two indi-
idual FEs with S-matrices S and S� to form a more complex FE.
he interior ports 4 and 2� are eliminated, while the exterior
orts 1, 2, 3, 1�, and 3� form the new ports of the combined FE.
he length of the waveguide connecting the two FEs appears as a
hase factor in the switching matrix T. In addition, the switching
atrix accounts for the potential mode mismatch in the case of
hen waveguides at ports 4 and 2� are different.
onnect incoming/outgoing modes in interior/exterior
orts, respectively. The switching matrix T contains all
nformation about the guided-mode mismatch at the inte-
ior ports and the phase shifts due to a certain length of
he waveguide section that connects the two devices. In
he simplest situation when there is no mode mismatch at
he interior ports of the two devices, i.e., when the con-
ecting waveguide fits to both interior ports, the switch-

ng matrix T takes the form of a reflectionless S-matrix
nd contains only exponentials of the guided-modes’
hase shifts over the length of the waveguide. The DC in
ig. 8 is an example for the simplest case of two connected
Es with no mismatch at the interior ports.
As alluded to above, for sufficiently well separated FEs,

nly the S-matrix blocks for propagating modes are taken
nto account. As a result, the individual S-matrices are
ery small �2
2 for the waveguide bend and 4
4 for the
oupler end point in our case), so that Eq. (4) can be
valuated with minimal effort.

Finally, the successive application of this scheme to all
onnections in a circuit allows the computation of the cir-
uit’s full S-matrix. Thus, large-scale circuits can be built
p easily, as soon as all S-matrices of the basic building
locks have been determined. Adding one more FE to an
xisting circuit requires only one additional application of
q. (4).

. BASIC FUNCTIONAL ELEMENTS
or the DC and MZI circuits presented in Section 5, we
equire only three basic FEs: the waveguide bend, the
oupler end point, and the delay line transition. Below, we
iscuss each of them in detail.

. Waveguide Bend
his functional element occurs in almost every circuit. It

s essential for the performance of the circuit to avoid in-
ernal reflections, which compromise or even destroy the
unctionality of the circuit. Therefore, we optimize the
imple bend so that it has minimal reflection over a given
requency range under the given design degrees of free-
om (Fig. 6). The optimization procedure is analogous to
hat employed in [21,22] for different devices in the case
f E-polarized light. In the present case, we allow a set of

3 pores in the bend region that are either unfilled or
lled with a low-index material with variable refractive

ndex.

. Coupler End Point
he directional coupler described in Subsection 5.A can be
plit into two equivalent end points that are connected
ver a coupling section with two parallel waveguides (see
ig. 8). The coupler end point (Fig. 7) is the region where

he two waveguides (ports 1 and 2) approach each other
nd end up parallel to form the coupling section (port 3,
ultimode waveguide). The performance of this FE, de-

icted in Fig. 7, is clearly influenced by the optimized
end, which is incorporated into the lower waveguide arm
o decrease reflections.
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. Delay Line Transition
or an MZI circuit, it is necessary to introduce controlled
hase shifts, e.g., to incorporate a delay line of a certain
ength into one arm. Such a delay line can be a slightly

odified waveguide with a different dispersion relative to
he reference waveguide in the second arm. As with the
C, we split the delay line into two congruent FEs: the

ransition to the delay line waveguide and the transition
ack. These are connected via a variable-length wave-
uide section. If the index change in the delay line wave-
uide relative to the reference waveguide is sufficiently
eak, and the transitions are sufficiently smooth, the re-
ectance at the transitions is small enough for all fre-
uencies of interest, so that the whole delay line can be

ig. 6. (Color online) Reflectance of waveguide bends in the
odel system. The FE was optimized with respect to minimal to-

al reflectance in the frequency range a /�= �0.370,0.390�. A set of

3 pores was chosen, into which different low-index materials
ith refractive indices of n=1.55, 1.60, 1.65, and 1.70 were al-

owed to be infiltrated, indicated by numbers from 1 to 4 in the
ower right panel, which depicts the optimized design. Only sym-

etric configurations with respect to a mirror reflection on the
lane bisecting the angle enclosed by the bend were scanned.
onsequently, the reflectance spectra of �1+4�6=15,625 configu-

ations were computed. The left panel shows the reflectance of
he simple (dashed curve) and the optimized design (solid curve).
he two vertical dashed lines mark the frequencies of minimal
eflectance of the optimized design (a /�=0.373 and 0.384). These
ines are repeated in all the subsequent spectra in this paper.

ig. 7. (Color online) Coupler end point design (right panel) and
ts spectral performance (left panel). The FE consists of two
ingle-mode waveguide ports (1 and 2) on the left and one dual-
ode waveguide port (3) on the right. Undesirable reflectances
ave been reduced by utilizing the optimized design of the wave-
uide bend (see Fig. 6).
pproximately treated as an ideal phase shifter, albeit
ith modified dispersion, which accounts for the phase

hifts relative to the MZI’s second arm. In the MZI pre-
ented in Subsection 5.B, an index ratio of ndelayline:nref
1.65:1.70, and a transition region of two holes filled
ith materials of intermediate refractive index (n=1.667
nd 1.683) is sufficient to reduce the reflectance at the de-
ay line to less than 2% for all frequencies above a /�
0.368. Nevertheless, in our computations, we treat the
elay line transitions exactly, i.e., as full-fledged FEs on a
ar with bends and coupler end points.

. LARGE-SCALE PHOTONIC CRYSTAL
IRCUITS
he basic FEs described above may now be combined to
onstruct more complex PhC-based circuitry. As an illus-
ration, we design PhC-based DCs and MZIs, which could
e useful in many WDM and sensing applications.

. Directional Coupler
y combining two opposite coupler end points with a suf-
ciently long straight section between them (see Fig. 8),
e can construct a DC of a certain length, i.e., a device

onsisting of two waveguides that come close to each
ther so that the fields can couple in a section of certain
ength.

The working principle of the DC is the following: in the
oupling section, the two aligned single-mode waveguides
orm a dual-mode waveguide that supports an even and
n odd propagating guided mode with respect to a certain
ymmetry of the system. In our case, this symmetry is a
lide reflection, i.e., a reflection on the plane equidistant
rom both single-mode waveguides in combination with a
ranslation of a /2 in the waveguide direction. These
odes propagate with different wave vectors keven and

odd, respectively. Due to mode beating, the resulting field
hifts periodically in space between the two single-mode
aveguides with a period of LB=2� / �keven−kodd�, called
eat length. Thus, if the coupler length L is equal to LB
or a multiple of it), light launched into one of the
aveguides exits in the same waveguide (bar state), while

f the coupler length is half the beat length (or an odd
ultiple of it), the light is completely coupled over to the

ther waveguide (cross state).

ig. 8. (Color online) Directional coupler built into a PhC. It is
ecomposed into two coupler end points with a variable length
aveguide between them (shaded region). Only the S-matrix of a

ingle coupler end point and the (simple) switching matrix of the
onnecting dual-mode waveguide have to be computed for all fre-
uencies of interest to allow design studies with couplers of any
ength.
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Owing to the simple form of the switching matrix for
his system, which only contains exponentials of the
uided-modes’ phase shifts over the length of the dual-
ode waveguide, the entire design can be derived from

nly the guided modes of the single-mode and the dual-
ode waveguide and the S-matrix of one coupler end

oint for all frequencies of interest. The length depen-
ence of the DC for any frequency is then easily com-
uted, since—for a given frequency—this only involves
he combination of 4
4 S-matrices by means of Eq. (4).

Figure 9 shows the length-dependent performance of
he DC for the fixed frequency a /�=0.373. The DC nicely
hows the behavior described above. The “bar transmit-
ance” T13 and the “cross transmittance” T14 alternate;
he reflectances (including the “cross reflectance” R12) are
elow 10−2. There is a slight asymmetry between T13 and
14, which stems from the asymmetry created by the
ends in the lower coupler arm. From Fig. 9, we can esti-
ate the beat length to be LB=95a. This is in very good

greement with the expected value of LB=2� / �keven
kodd�=94.1 derived directly from dispersion data.
Due to the wavelength dependence of the beat length

B���, the frequency spectrum of the fixed-length DC (Fig.
0) shows an oscillating behavior of the transmittances in
requency regions where the reflectances (“backreflec-
ances,” R11 and R22, as well as “cross reflectance”, R12)
re small. In other regions the device performance is
ainly governed by Fabry–Perot oscillations due to the

ig. 9. (Color online) Length dependence of the reflectances and
ransmittances of the DC shown in Fig. 8 for a fixed frequency
/�=0.373.

ig. 10. (Color online) Reflectance/transmittance spectrum of a
xed-length DC as shown in Fig. 8 with L=97a. For this length,
he DC is in the bar state for a /�=0.373 and in the cross state for
/�=0.384.
onnegligible reflectances and resonant behavior com-
letely destroying the characteristic features of a DC. The
requency region of acceptable performance can be identi-
ed as a /�� �0.368,0.390�.

. Mach–Zehnder Interferometer
n the next step we combine two DCs by connecting them
ia two separate arms, see Fig. 11. We may incorporate a
elay line into one arm by using a different low-index ma-
erial (n=1.65 instead of n=1.7) to fill a certain number of
ores in that arm. Such an MZI circuit can be the starting
oint for well-known wavelength flattening techniques to
acilitate WDM applications [23,24].

To address this type of circuit, we require the
-matrices of the coupler end point, the waveguide bend,
nd the delay line transition described above. All these
unctional elements are small compared to the size of the
ntire circuit. Then, we are completely free to choose the
wo DC lengths L1 and L2 as well as the length of the MZI
rms and the delay line length LD.
First, we consider the balanced MZI with two equal

rms. In Fig. 12 we display the performance of this cir-
uit. It is apparent that such a balanced MZI is equiva-
ent to a DC with effective length L=L1+L2. This can be
een by comparing Figs. 10 and 12.

By incorporating a delay line into one arm, we can
chieve an MZI with nonzero relative phase shifts �� be-
ween the waveguides in the two arms. The change of ��
ith frequency depends strongly on the length of the de-

ay line and the index difference between the two arms.
he delay line can be properly designed so that the phase
hift is 2n�, n�N0 for one frequency �a and �2n+1�� for

different frequency �b. The spectrum for this case is
hown in Fig. 13. As compared to the balanced MZI (Fig.

ig. 11. (Color online) MZI consisting of two DCs of lengths L1
nd L2 connected via two separate arms. In one arm a delay line
f length LD is realized by filling the pores with a different poly-
er with n=1.65.

ig. 12. (Color online) Spectrum of the MZI depicted in Fig. 11
ith L1=L2=49a without a delay line (both arms have the same

ptical length). This balanced MZI acts as a DC of length L1
L =98a. Compare with Fig. 10.
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2), the MZI with delay line exhibits a large bar transmit-
ance T13 at the frequency a /�=0.384, while T13 is zero
or that frequency in the balanced MZI. By using actively
unable materials such as liquid crystals or materials
ith intensity-dependent refractive index to create the
elay line, this functionality can be used as a switch or
odulator device.

. SUMMARY
n this paper, we have introduced a Wannier-function
ased guided-mode S-matrix formalism for the design of
omplex PhC circuitry. We have applied the formalism to
he realistic case of H-polarized light in macroporous sili-
on, where the FEs are created by single-pore infiltration
ith low-index materials (see [17] for the first experimen-

al realization of such a system). By calculating
-matrices of small “basic” FEs, which act as building
locks, we can efficiently treat large and complex photonic
ircuits via an S-matrix combination. This approach
cales much better than all-purpose techniques such as
DTD, and allows detailed design studies of large-scale
ircuits such as the directional coupler and MZI, which
e have analyzed.
On the “lattice level” of PhCs, the Wannier function
ethod allows efficient calculation and optimization of

he S-matrices of basic FEs. It is capable of accurately
reating the amplitude and phase of S-matrix entries.
his is crucial for the correct treatment of circuits consist-

ng of cascades of several basic FEs, such as MZI circuits.
he efficiency of the Wannier-function approach in the re-
erse design of basic FEs has been demonstrated before
21,22], and in the present paper we have applied this ap-
roach to waveguide bends for H-polarized radiation in
D macroporous silicon PhCs.
While the focus of the present paper has been on the

esign of large-scale devices, we would like to note
hat—to the best of our knowledge—this paper presents
he first successful quantitative application of maximally
ocalized photonic Wannier functions for H-polarized ra-
iation in 2D PhCs. In addition, the extension of the

ig. 13. (Color online) Spectrum of the MZI depicted in Fig. 11
ith L1=L2=49a and a delay line of variable length LD=17a

solid curves), 10a (dashed curves) and 6a (dotted curves). For
D=17a, the relative phase shift approximately corresponds to
�=0 at a /�=0.373 and ��=� at a /�=0.384. For shorter delay

ines, it is still zero at a /�=0.373, but takes some value 0���
� at a /�=0.384. Compare with the balanced MZI case (��=0

t all frequencies) in Fig. 12.
annier-function based guided-mode S-matrix approach
o 3D PhCs does not provide conceptual difficulties.
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