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We study light transmission in two-dimensional photonic-crystal waveguides with embedded nonlinear defects.
First, we derive effective discrete equations with long-range interaction for describing the waveguide modes
and demonstrate that they provide a highly accurate generalization of the familiar tight-binding models that

are employed, e.g., for the study of coupled-resonator optical waveguides.

Using these equations, we investi-

gate the properties of straight waveguides and waveguide bends with embedded linear and nonlinear defects.
We emphasize the role of evanescent modes in the transmission properties of such waveguides and demon-
strate the possibility of the nonlinearity-induced bistable (all-optical switcher) and unidirectional (optical di-
ode) transmission. Additionally, we demonstrate adaptability of our approach for investigation of multimode
waveguides by the example of the bound states in their constrictions. © 2002 Optical Society of America

OCIS codes: 230.7370, 130.2790, 130.3120.

1. INTRODUCTION

Photonic crystals are usually viewed as an optical analog
of semiconductors that modify the properties of light simi-
larly to a microscopic atomic lattice that creates a semi-
conductor bandgap for electrons.! One of the most prom-
ising applications of photonic crystals is the possibility
creating compact integrated optical devices,>® which
would be analogous to the integrated circuits in electron-
ics but would operate entirely with light. Replacing rela-
tively slow electrons with photons as the carriers of infor-
mation can dramatically increase the speed and the
bandwidth of advanced communication systems, thus
revolutionizing the telecommunication industry.

To employ the high-technology potential of photonic
crystals for optical applications and all-optical switching
and waveguiding technologies, it is crucially important to
achieve a dynamical tunability of their properties. For
this purpose several approaches have been suggested
(see, e.g., Ref. 4). One of the most promising concepts is
based on the idea of employing the properties of nonlinear
photonic crystals, i.e., photonic crystals made from dielec-
tric materials whose refractive index depends on the light
intensity. Exploration of the nonlinear properties of pho-
tonic bandgap materials is an important direction in cur-
rent research that opens up a broad range of novel appli-
cations of photonic crystals for all-optical signal
processing and switching, allowing an effective way to
create highly tunable bandgap structures operating en-
tirely with light.

One of the important concepts in the physics of photo-
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nic crystals is related to field localization on defects. In
solid-state physics the idea of localization is associated
with disorder that breaks the translational invariance of
a crystal lattice and supports spatially localized modes
with the frequency outside the phonon bands. A similar
concept is well known in the physics of photonic crystals
in which an isolated defect (a region of different refractive
index that breaks periodicity) is known to support a local-
ized defect mode. An array of such defects creates a
waveguide that allows directed light transmission for the
frequencies inside the band gap. Because the frequen-
cies of the defect modes created by nonlinear defects de-
pend on the electric field intensity, such modes can be use-
ful in controlling light transmission. From the viewpoint
of possible practical applications spatially localized states
in optics can be associated with different types of all-
optical switching devices in which light manipulates and
controls light itself owing to the varying input intensity.

Nonlinear photonic crystals and photonic crystals with
embedded nonlinear defects create an ideal environment
for the observation of many of the nonlinear effects pre-
dicted earlier and studied in other branches of physics.
In particular, the existence of nonlinear localized modes
with the frequencies in the photonic bandgaps was al-
ready predicted and demonstrated numerically for sev-
eral models of photonic crystals with the Kerr-type
nonlinearity.>

In this paper, we study the resonant light transmission
and localization in photonic-crystal waveguides and
bends with embedded nonlinear defects. For simplicity,
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we consider the case of a photonic crystal created by a
square lattice of infinite dielectric rods, with waveguides
made by the removal of some of the rods. Nonlinear
properties of the waveguides are controlled by the embed-
ding of the nonlinear defect rods. We demonstrate that
the effective interaction in such waveguiding structures is
nonlocal, and we suggest a novel, to our knowledge, theo-
retical approach that is based on effective discrete equa-
tions for describing both linear and nonlinear properties
of such photonic-crystal waveguides and circuits, includ-
ing the localized states at the waveguide bends. Addi-
tionally, we study the transmission of waveguide bends
and emphasize the role of evanescent modes for the cor-
rect analysis of their properties.

The paper is organized as follows: In Section 2, we in-
troduce our model of a two-dimensional (2-D) photonic
crystal and provide a brief derivation of the effective dis-
crete equations for the photonic-crystal waveguides (cre-
ated by removed or embedded rods) that is based on the
Green function technique. In Section 3, we apply these
discrete equations to the analysis of the dispersion prop-
erties of straight waveguides. We also discuss a link be-
tween our approach and results obtained within the
framework of the familiar tight-binding approximation of-
ten used in solid-state physics models. In Section 4, we
demonstrate the applicability of our method for the study
of the properties of multimode waveguides. As an ex-
ample, we analyze the bound states in waveguide con-
striction. Sections 5 through 7 are devoted to the study
of the transmission properties of straight waveguides and
waveguide bends with embedded nonlinear defects. We
emphasize the important role of evanescent modes that
cannot be accounted for in the framework of the tight-
binding model, which includes only the coupling between
the nearest-neighbor defect modes. In particular, we
demonstrate the possibility of bistable (Section 5) and
unidirectional (Section 6) transmission and suggest that
waveguide bends with embedded nonlinear defects can be
employed for effective control of light transmission (Sec-
tion 7). Section 8 concludes the paper with a summary of
the results and discussions of the further applications of
our approach.

2. EFFECTIVE DISCRETE EQUATIONS

In this section, we suggest and describe a novel theoreti-
cal approach based on effective discrete equations for de-
scribing many of the properties of the photonic-crystal
waveguides and circuits, including the transmission spec-
tra of sharp waveguide bends. This is an important part
of our analysis because the properties of the photonic
crystals and the photonic-crystal waveguides are usually
studied by the solution of Maxwell’s equations numeri-
cally, and such calculations are, generally speaking, time
consuming. Moreover, the numerical solutions do not al-
ways provide good physical insight. The effective dis-
crete equations that we derive below and employ further
in the paper are somewhat analogous to the Kirchhoff
equations for electric circuits. However, in contrast to
electronics, in photonic crystals both diffraction and inter-
ference become important, and thus the resulting equa-
tions involve long-range interaction effects.
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We introduce our approach for a simple model of 2-D
photonic crystals consisting of infinitely long dielectric
rods arranged in the form of a square lattice with a lattice
spacing a. We study light propagation in the plane nor-
mal to the rods, assuming that the rods have a radius r
= 0.18a and a dielectric constant of €, = 11.56 (this cor-
responds to GaAs or Si at a wavelength of ~1.55 um).
For the electric field E(x, t) = exp(—iwt)E(x|w) polarized
parallel to the rods Maxwell’s equations reduce to the ei-
genvalue problem

2

VZ+ | —]| ex)

E(x|w) = 0, (1)

which can be solved by the plane-wave method.® A per-
fect photonic crystal of this type possesses a large (38%)
TM bandgap between o = 0.303(27wc/a) and o
= 0.444(2mc/a) (see Fig. 1), and it has been extensively
employed during last few years for the study of bound
states,'® the transmission of light through sharp
bends,'? waveguide branches'® and intersections,'*
channel drop filters,'® nonlinear localized modes in
straight waveguides,” and discrete spatial solitons in per-
fect 2-D photonic crystals.® Recently, this type of photo-
nic crystal with a 90° bent waveguide was fabricated in
macroporous silicon with ¢ = 0.57 um and a TM band
gap at 1.55 ,u,m.16

To create a waveguide circuit, we introduce a system of
defects and assume, for simplicity, that the defects are
identical rods of radius r; located at the points x,, , where
n is the index number of the defect rods. Importantly, a
similar approach can be employed equally well for the
study of the defects created by the removal of isolated
rods in a perfect 2-D lattice, and we demonstrate such ex-
amples below.

In a photonic crystal with defects the dielectric con-
stant e(x) can be presented as a sum of the periodic and
the defect-induced terms, i.e., e(x) = €,(x) + de(x), with
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Fig. 1. Bandgap structure of the photonic crystal created by a
square lattice of dielectric rods with ry = 0.18a and ¢, = 11.56;
the bandgaps are shown crosshatched. The top right-hand sche-
matic shows a cross-sectional view of the 2-D photonic crystal.
The bottom right-hand schematic shows the corresponding Bril-
louin zone with the irreducible zone shaded.
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where f(x) =1 for |x| <r; and vanishes otherwise.
Equation (1) can be therefore written in the integral form

® 2
E(x|lw) = (;) fdzyG(X, ylo)de(y)E(ylw), (3)

where G(x, y|w) is the Green function of a perfect 2-D
photonic crystal (see, e.g., Ref. 7).

A single defect rod is described by the function de(x)
= ¢€4f(x), and it can support one or more localized modes.
Such localized modes are the eigenmodes of the discrete
spectrum of the eigenvalue problem

w2
&(x) = (?l) f PyG(x, ylo)ef(WE(Y), @)
rd

where w; is the frequency (a discrete eigenvalue) of the
[th eigenmode and &(x) is the corresponding electric
field.

When we increase the number of defect rods (for ex-
ample, to create photonic-crystal waveguide circuits),1~1?
the numerical solution of the integral equation (3) be-
comes complicated and, moreover, it is severely restricted
by current computer capabilities. Therefore, one of our
major goals in this paper is to describe the development of
a new approximate physical model that would allow the
application of fast numerical techniques, combined with a
reasonably good accuracy, for the study of more compli-
cated (linear and nonlinear) waveguide circuits in photo-
nic crystals.

To achieve our goal, we consider the localized states
created by a (in general, complex) system of defects [Eq.
(2)] as a linear combination of the localized modes &(x)
supported by isolated defects:

E(xlo) = 2 4 ()6(x ~ x,). (5)
Substituting Eq. (5) into Eq. (3), multiplying it by & (x
— X,s), and integrating with x, we obtain a system of dis-
crete equations for the amplitudes ¢ of the /th eigen-
modes localized at nth defect rods

U’ () — I';n' l
2 )\l,nn ljjgl) - E Ed/'l’l,nr,lm(w)l/jgl)’ (6)
lin l,n,m

where

[

)\l,;l" f d’x&(x — x,)&(x — x,1),

w2
ph (@) = (—) fd2X51'(X - x,)
T c

X f A?yG(x, y|lo)f(y — x,)E(y — X,).

(N

It should be emphasized that the discrete equations (6)
and (7) are derived by use of only the approximation pro-
vided by the ansatz equation (5). As can be demon-
strated by a comparison of the approximate results with
the direct numerical solutions of the Maxwell equations,
this approximation is usually highly accurate, and it can
be used in many physical problems.
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However, the effective discrete equation (6) is still too
complicated, and, in some cases, it can be simplified fur-
ther and still remain accurate. A good example is the
case of the photonic-crystal waveguides created by a se-
quence of widely separated defect rods. Such waveguides
are known as coupled-resonator optical waveguides'™'8
(CROWSs) or coupled-cavity waveguides.'® For those
cases, the localized modes located at each of the defect
sites are only weakly coupled between themselves. As is
known, such a situation can be described accurately by
the so-called tight-binding approximation (see also Ref.
20). For our formalism this means that }\ff,;”IH = f’n",;
= 0 for|nr — n|> 1and |n’ — m| > 1. The most im-
portant feature of the CROW circuits is that their bends
are reflectionless throughout the entire band.'”'® This
nonreflection is in a sharp contrast to conventional
photonic-crystal waveguides created by a sequence of re-
moved or introduced defect rods (see, e.g., Ref. 11 and ref-
erences therein) in which 100% transmission through a
waveguide bend is known to occur only at certain reso-
nant frequencies. In spite of this visible advantage, the
CROW structures have a narrow guiding band, and, as a
result, they also effectively demonstrate complete trans-
mission through the waveguide bend in a narrow fre-
quency interval.

Below, we consider different types of photonic-crystal
waveguides and show that we provide an accurate simpli-
fication of Eq. (6) by accounting for an indirect coupling
between the remote defect modes that is caused by the
slowly decaying Green function, ,u,f’n”,; # 0 for |nr — n|
< L, where the number L of effectively coupled defects
usually lies between five and ten. As we show below, this
type of interaction, which is neglected in the tight-binding
approximation, is important for understanding the trans-
mission properties of the photonic-crystal waveguides.
At the same time, we neglect a direct overlap between the
nearest-neighbor eigenmodes, which is often considered
to be important,'”!® ie., we consider )\ff,;”’ = 81,6nns
(with &;; being the Dirac delta function) and ,u,f/n”n; =0
for n # m. Taking into account this interaction leads to
negligible corrections only.

If we assume that the defects support only the mono-
pole eigenmodes (marked by [ = 1) the coefficients [Egs.
(7)] can be calculated reasonably accurately in the ap-
proximation that the electric field remains constant in-
side the defect rods, i.e., £;(x) ~ f(x). This relation cor-
responds to the averaging of the electric field in the
integral equation (3) over the cross section of the defect
rods.”?! In this case the resulting approximate discrete
equation for the amplitudes of the electric fields E,(w)
= ¢, (») of the eigenmodes excited at the defect sites
has the matrix form

> M, (0)E,(0) =0,

Mn,m(w) = Ed(Em)Jn,m(w) - 5n,m7
(8)

1n

where J, ,(0) = ujy, (o) is a coupling constant calcu-

lated in the approximation such that &;(x) ~ f(x), so
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o2
(@) = (— f *yG(x,, X, + ¥]o) 9)
c ra
is completely determined by the Green function of a per-
fect 2-D photonic crystal (see details in Refs. 7 and 8).
First, we check the accuracy of our approximate model
equation (8) for the case of a single defect located at the
point X,. In this case, Eq. (8) yields the simple result
Joolwg) = /ey, and this expression defines the fre-
quency w, of the defect mode. In particular, applying
this result to the case when the defect is created by a
single removed rod, we obtain the frequency wy
= 0.391(2mc/a), which differs by only 1% from the value
wg = 0.387(2mc/a), calculated with the help of the MIT
Photonic-Bands numerical code.’

3. WAVEGUIDE DISPERSION

A simple single-mode waveguide can be created by the re-
moval of a row of rods (see the inset in Fig. 2). Assuming
that the waveguide is straight (M, ,, = M, _,,) and ne-
glecting the coupling between the remote defect rods (i.e.,
M, _,, = 0 for all |n — m| > L), we rewrite Eq. (8) in the
transfer-matrix form, F, ., = TFn, where we introduce
the vector ¥, = {E,,E, 1, ...,E, sr.1} and the trans-
fer matrix 7' = {T; ;} with the nonzero elements

ML—j(w)

B )

, for j=1,2,...,2L,

T;j1=1 for j=1,2,...,20L - 1. (10)

Solving the eigenvalue problem

T(0)®? = exp{ik,(w)}®?, (11)

we can find the 2L eigenmodes of the photonic-crystal
waveguide. The eigenmodes with real wave numbers
k,(®) correspond to the modes propagating along the
waveguide. In the waveguide shown in Fig. 2 there exist
only two such modes (we denote them as ®! and ®2),
propagating in opposite directions (k; = —ky > 0). In
Fig. 2, we plot the dispersion relation %(w) calculated by
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Fig. 2. Dispersion relation for a 2-D photonic-crystal waveguide
(shown in the inset) as calculated by the supercell method® (solid
curve) and from approximate equations (10) and (11) for L = 7
(dashed curve) and L = 1 (dotted curve). The hatched areas are
the projected band structure of a perfect 2-D crystal.
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Fig. 3. Same as for Fig. 2 but for two other types of waveguides
better described by the tight-binding models. The solid curve
represents results from supercell calculations; the dotted and the
dashed curves represent results from the approximate equations.

three different methods: The first method (solid curve) is
calculated directly by the supercell approach,® whereas
those for the dotted and the dashed curves are found from
Eq. (11) in the nearest-neighbor approximation (L = 1;
dotted curve) and also when we take into account the
long-range interaction through the coupling between sev-
eral neighbors (L = 7; dashed curve). As soon as the
long-range interaction is taken into account, we observe a
very good agreement between the results provided by our
effective discrete equations and those obtained by the su-
percell method, except for a narrow region of large fre-
quencies, where the dispersion curve penetrates into the
spectrum band. The discrepancy in this latter region ap-
pears to be due to coupling between localized defect
modes and extended band modes in the vicinity of the
band edge, the effect of which is beyond the approxima-
tion of the discrete equations.

It is important to emphasize that the well-known tight-
binding approximation that includes coupling between
the nearest-neighbor defects only (i.e., L = 1) is not valid
for the waveguide shown in Fig. 2. Generally speaking,
the interaction between remote rods cannot be neglected
as soon as we study the waveguides created by the re-
moval (or the insertion) of the rods along a row or more
complicated structures of this type. In such a case, as
can be seen from Fig. 2, the dispersion relation found in
the tight-binding approximation is incorrect, and, to ob-
tain accurate results, one should take into account the
coupling between several defect rods.
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However, for the waveguides of a different geometry
when only the second (or the third, etc.) rods are removed
all methods provide reasonably good agreement with the
direct numerical results, as is shown for two examples in
Fig. 3. In this case, the waveguides are created by an ar-
ray of weakly coupled cavity modes, and they are similar
to the CROW structures analyzed earlier by several
authors.!”® Thus the dispersion properties of CROWSs
(or similar waveguides) can be described with good accu-
racy by the tight-binding approximation; our new ap-
proach confirms this conclusion, and it provides a simple
method for the derivation of the approximate equations
and estimation of its validity.

4. BOUND STATES AND MULTIMODE
WAVEGUIDES

As is well known (see, e.g., Ref. 10), photonic-crystal
waveguides with embedded defects (as well as waveguide
bends, branches, intersections, etc.) can support localized
bound modes with the frequencies inside the bandgaps.
Our approach permits the study of such bound states as
localized solutions (localized eigenmodes) of the effective
discrete equation (8).

Recently, we showed that Eq. (8) describes, with an ac-
curacy of 1.5%, the bound states supported by a 90° wave-
guide bend.?? Here, we provide a different example and
consider a multimode waveguide formed by the removal
of four rows of rods in the (11) direction of the lattice.
Specifically, to provide a comparison with the case studied
by direct numerical approach, we take the example stud-
ied earlier in Ref. 10. Such a waveguide supports four
guided modes that repel each other, creating a bandgap in
the interval w = 0.390(27c/a) to @ = 0.417(27c/a) (Ref.
10). First, we solve Eq. (8) by taking into account the
coupling between the L = 7 neighbors and recover the
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waveguide bandgap in the interval between
= 0.387(2mc/a) to w = 0.410(2mc/a) with an accuracy
of approximately 1.7%. Introducing a narrow constric-
tion into this multimode waveguide, as is shown in Fig. 4,
we create a defect that can support five localized bound
states with the frequencies inside the waveguide
bandgap. One of these modes [depicted in Fig. 4(c)] was
found and discussed in more detail earlier in Ref. 10 (see
Fig. 5 from the cited paper). Such a mode was calculated
in Ref. 10 for a photonic crystal with » = 0.12a, and thus
the frequency of the bound state found there differs
slightly from our result. It was shown that, in some
simple cases, when a waveguide constriction (or a wave-
guide bend) can be considered as a finite section of a
waveguide of a different type, the bound states corre-
spond closely to the cavity modes excited in this finite sec-
tion. However, such a simplified one-dimensional model
does not correctly describe more complicated cases,'® even
the properties of a simple waveguide bend discussed in
Ref. 22. The situation becomes even more complicated
for waveguide branches.!® In contrast, solving the dis-
crete equation (8), we can find the frequencies and the
profiles of the bound states excited in an arbitrary com-
plex set of defects.

5. RESONANT TRANSMISSION OF AN
ARRAY OF DEFECTS

In addition to the propagating guided modes, in photonic-
crystal waveguides there always exist evanescent modes
with imaginary k,. These modes cannot be accounted
for within the framework of the tight-binding theory that
relies on the nearest-neighbor interaction between defect
rods. However, we can find evanescent modes in an ex-
tended discrete model equation (8) by taking into account
coupling between several neighboring defects. To illus-
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trate this statement, we plot, in Fig. 5, on a complex plane
all 14 eigenmodes found for L = 7 from Eq. (11) for the
waveguide shown in Fig. 2. As we can see from that plot,
the imaginary parts of k,, for all evanescent modes are be-
tween 1.09 and 1.18. This outcome means that such
modes decay rather slowly, and they should manifest
themselves in various phenomena of the waveguide trans-
mission and localized modes. Moreover, they decay al-
most equally slowly, and thus, to obtain accurate results,
we should account for them all. That is why in our cal-
culations we include the coupling between the L = 7
neighbors. For smaller L, we may lose the effects asso-
ciated with some of the evanescent modes. For larger
values of L there appear new evanescent modes that,
however, decay quite rapidly and can therefore be ne-
glected.

Although the evanescent modes remain somewhat hid-
den in straight waveguides, they become crucially impor-
tant in more elaborate structures such as waveguides
with embedded linear or nonlinear defects and waveguide
bends and branches. In these cases the evanescent
modes manifest themselves in several different ways. In
particular, they determine nontrivial transmission prop-
erties of the photonic-crystal circuits considered below.

As a first example of the application of our approach,
we study the transmission of a straight waveguide with
embedded nonlinear defects. Such a structure can be
considered to be two semi-infinite straight waveguides
coupled by a finite region of defects located between them.
The coupling region may include both linear (as a domain
of a perfect waveguide) and nonlinear (embedded) defects.
We assume that the defect rods inside the coupling region
are characterized by the index that runs from a to b and
that the amplitudes E,, (m = a, ...,b) of the electric
field at the defects are all unknown. We number the
guided modes of Eq. (11) in the following way: p = 1 cor-
responds to the mode propagating in the direction of the
nonlinear section (for both ends of the waveguide), p
= 2, corresponds to the mode propagating in the opposite
direction, p = 3, ...,L + 1 corresponds to the evanes-
cent modes that grow in the direction of the nonlinear sec-
tion, and p = L + 2, ...,2L corresponds to the evanes-
cent modes that decay in the direction of the nonlinear
section. Then we can write the incoming and the outgo-
ing waves in the semi-infinite waveguide sections as a su-
perposition of the guided modes:

L+1
Emin = aiq)a—ml + arq)a—m2 + E Bpmq)a—mp> (12)
p=3

form =a — 2L, ...,a — 1, and
L+1

Emout = at(bm*bz + E Bpourd)mfbp’ (13)
p=3

form =6+ 1,...,b + 2L, where ﬂpi“ and ,BP‘“lt are un-
known amplitudes of the evanescent modes growing in
the direction of the nonlinear section, whereas «;, «o;,
and «, are unknown amplitudes of the incoming, the
transmitted, and the reflected, respectively, propagating
waves. We take into account that the evanescent modes
with p > L + 1 (growing in the directions of the wave-
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Fig. 6. Transmission coefficients of an array of nonlinear defect
rods calculated from Egs. (8)—(13) with L = 7 in the linear limit
of very small |a,|? (solid curves) and for nonlinear transmission
when the output intensity is |a,|2 = 0.25 (dashed curves), for dif-
ferent numbers of the defects. We use nonlinear defect rods

with the dielectric constant €’ = 7; they are marked by open
circles on the diagrams on the right-hand side.

guide ends) must vanish. Now, substituting Egs. (12)
and (13) into Eq. (8), we obtain a system of linear (or non-
linear for nonlinear defects) equations with 2L + b — a
+ 1 unknown. Solving this system, we find the trans-
mission coefficient, T' = |, /a;|?, and the reflection coeffi-
cient, R = |a,/q;|?, as functions of the light frequency w
and the intensity |a;/?> or |e|?.  Recently, we
demonstrated? that the linear transmission properties of
the waveguide bends are described accurately by this ap-
proach. Below, we study nonlinear transmission of the
photonic-crystal waveguides and waveguide bends.
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In Fig. 6, we present our results for the transmission
spectra of straight waveguides (created by a row of re-
moved rods) with an array of embedded nonlinear defects.
We assume throughout the paper that all nonlinear defect
rods are identical, with a radius of r; = r;, = 0.18a and a
dielectric constant of e; = € + |E,|? [with €} = 71,
which grows linearly with the light intensity (the so-
called Kerr effect). In the linear limit, the embedded de-
fects behave like an effective resonant filter, and only the
waves with some specific resonance frequencies can effec-
tively be transmitted through the defect section. The
resonances appear to be due to the excitation of cavity
modes inside the defect region, whereas a single defect
does not demonstrate any resonant behavior. When the
intensity of the input wave grows the resonant frequen-
cies found in the linear limit are shifted to lower values.
The sensitivity of different resonances to the change in
light intensity is quite different and may be tuned by our
matching the defect parameters. Nonlinear resonant
transmission is found to possess bistability, similarly to
another problem of the nonlinear transmission (see, e.g.,
Refs. 23-25). Bistable transmission occurs for frequen-
cies smaller than the resonant, in a linear limit, fre-
quency (see Fig. 7).

6. OPTICAL DIODE

An all-optical diode is a spatially nonreciprocal device
that allows unidirectional propagation of a signal at a
given wavelength. In the ideal case, the diode transmis-
sion is 100% in the forward propagation, whereas it is
much smaller or vanishes for backward (opposite) propa-
gation, yielding a unitary contrast.

The first study of the operational mechanism for a pas-
sive optical diode based on a photonic bandgap material
was carried out by Scalora and co-workers.?®?” These
authors considered the pulse propagation near the band
edge of a one-dimensional photonic-crystal structure with
a spatial gradation in the linear refractive index, together
with a nonlinear medium response, and found that such a
structure can result in unidirectional pulse propagation.

To implement this concept for the waveguide geometry
discussed in Section 5, we consider an asymmetric struc-
ture made up of four nonlinear defect rods, as shown in
the diagrams on the right-hand side in Fig. 8. Figure 8

0.7~ —— =10.341 x 2rc/a
o - ——— m=0.345x 2nc/a
—g“ o6 —— o= 0.349 x 2nc/a
- P =0.353 x 2nc/a
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=
— 04 Resonance in linear limit =~ \ _———————"
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=l | e ]
g ............
SO0l V7T Y
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. | SN IR
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0 01 02 03 04 05 06 07 08
L 2
Incoming light, |o|

Fig. 7. Bistability in the nonlinear transmission of an array of
five nonlinear defect rods shown in Fig. 6(b).
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Fig. 8. Transmission coefficients of an asymmetric array of non-
linear defect rods calculated for the same parameters as in Fig. 6.
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Fig. 9. Nonlinear transmission of the optical diode for the for-

ward (see top of Fig. 8) and the backward (see bottom of Fig. 8)
directions at a light frequency of w = 0.326(27c/a).

shows the transmission spectra of such an asymmetric
structure in the opposite directions indicated by the two
arrows in diagrams on the right-hand side. As can be
seen, in the linear limit the transmission is characterized
by two resonant frequencies and does not depend on the
propagation direction. However, because the sensitivity
of both resonant frequencies to the change in the light in-
tensity is different for the forward (see Fig. 8, top) and the
backward (see Fig. 8, bottom) propagation directions, the
transmission becomes, in the vicinity of resonant frequen-
cies, highly asymmetric for large input intensities. This
asymmetry results in nearly unidirectional waveguide
transmission, as is shown in Fig. 9.

In contrast to the perfect resonators used for Fig. 6, the
transmission of the asymmetric structure under consider-
ation is not very efficient at the resonant frequencies.
However, we expect that the optical diode effect, with
much better efficiency, can be found in other types of
waveguide geometry and that a unitary contrast can be
achieved by proper optimization of the waveguide and the
defect parameters, which can be carried out by use of our
method and the effective discrete equations derived in
Section 2.

7. WAVEGUIDE BENDS

As one of the final examples in this paper, we study the
transmission properties of waveguide bends. We con-
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sider a bent waveguide as consisting of two coupled semi-
infinite straight waveguides with a finite section of de-
fects between them. The finite section includes a bend
with a safety margin of the straight waveguide at both
ends. Similar to what we discussed in Section 5 for
straight waveguides, we can solve the system of effective
discrete equations to find the transmission, 7T
= |a,/a;|?, and the reflection, R = |a,/a;|?, coefficients
of the waveguide bends. In Fig. 10, we present our re-
sults for the transmission spectra of several types of bent
waveguides, which were discussed in Ref. 11, where the
possibility of high transmission through sharp bends in
photonic-crystal waveguides was first demonstrated. We
compare the reflection coefficients calculated by the finite-
difference time-domain method in Ref. 11 (dashed curves)
with our results, calculated from Eqgs. (8)—(13) for L = 7
(solid curves) and for L = 2 (dotted curve in the top plot).
As can clearly be seen, Egs. (8)—(13) provide a very accu-
rate method for calculating the transmission spectra of
waveguide bends, if only we account for long-range inter-
actions. It should be emphasized that the approximation
in which only next-neighbor interactions are taken into
account is usually too crude, whereas the tight-binding
theory incorrectly predicts perfect transmission for all
guiding frequencies.

The resonant transmission can be modified dramati-
cally by the insertion of both linear and nonlinear defects
into the waveguide bends. To illustrate such features, we
consider the waveguide bend with three embedded non-
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Fig. 10. Reflection coefficients calculated by the finite-difference
time-domain method (dashed curve; from Ref. 11) and from Eqgs.
(8)—(13) with L = 7 (solid curves) and L = 2 (dotted curve; only
in the top plot) for different bend geometries.

S. Mingaleev and Y. Kivshar

R R A eoo0o0o0o0e

0.8 1 — eo
0.6 r ! - 1 e ceee
T 7k ! — Linear H e oOeeee
0.4 - " -- a=05 T e eecocee
02— ! 1 e eoeoe0e
—I 1 IAI—iﬂ-f-lﬁLl I P | E ) | B 1 I 11 I— ° ©o00o00

0.3 0.32 034 036 038 04 042 044
Frequency (wa/2mc)

Fig. 11. Transmission of a waveguide bend with three embed-
ded nonlinear defect rods in the linear (solid curve) and the non-
linear (dashed curve) regimes. The defect rods have a dielectric

constant of s&m = 7, and they are marked by open circles.
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Fig. 12. Bistable nonlinear transmission through the wave-
guide bend shown in Fig. 11, for a light frequency of o
= 0.351(2mc/a).

linear defects, as is depicted in Fig. 11 in the right-hand-
side diagram, where these defects are shown by open
circles. In the linear regime such a sharp bend behaves
as an optical threshold device that efficiently transmits
the guided waves with frequencies above the threshold
frequency but completely reflects the waves with the
lower frequencies. The transmission coefficient of this
waveguide bend in the linear limit is shown in Fig. 11 by
a solid curve. When the input intensity increases the
threshold frequency decreases, extending the transmis-
sion region (see the dashed curve in Fig. 11). The result-
ing transmission plotted as a function of the input inten-
sity demonstrates a sharp nonlinear threshold character
with extremely low transmission of the waves below a cer-
tain (rather small) threshold intensity (see Fig. 12).

8. CONCLUSIONS

We have suggested a novel conceptual approach for de-
scribing a broad range of transmission properties of
photonic-crystal waveguides and circuits. Our approach
is based on the analysis of the effective discrete equations
derived with the help of the Green function technique,
and it generalizes the familiar tight-binding approxima-
tions that are usually employed to study CROWs or
coupled-cavity optical waveguides. The effective discrete
equations that we have introduced in this paper empha-
size the important role played by the evanescent modes in
the transmission characteristics of photonic-crystal cir-
cuits with waveguide bends and embedded defects. Em-
ploying this technique, we have studied the properties of
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several important elements of (the linear and the nonlin-
ear) photonic-crystal circuits, including a nonlinear
bistable transmitter and an optical diode created by an
asymmetrical structure of nonlinear defects. We believe
that our approach can be useful for solving more compli-
cated problems and that it can be applied to study trans-
mission characteristics of waveguide branches and chan-
nel drop filters.
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