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1.1 Introduction

Since the invention of the laser, progress in Photonics has been intimately related to the devel-
opment of optical materials which allow one to control the flow of electromagnetic radiation
or to modify light–matter interaction. Photonic Crystals (PhCs) represent a novel class of op-
tical materials which elevates this principle to a new level of sophistication. These artificial
structures are characterized by two–dimensional (2D) or three–dimensional (3D) periodic ar-
rangements of dielectric material which lead to the formation of an energy band structure for
electromagnetic waves propagating in them. Recent advances in micro–structuring technol-
ogy provide an enormous flexibility in the choice of material composition, lattice periodicity
and symmetry of these arrangements allowing one to fabricate PhCs with embedded defect
structures. As a consequence, the dispersion relation and associated mode structure of PhCs
may be tailored to almost any need. This results in a potential for controlling the optical
properties of PhCs that may eventually rival the flexibility in tailoring the properties of their
electronic counterparts, the semiconducting materials.

One of the most striking features of PhCs is associated with the fact that suitably engi-
neered PhCs may exhibit frequency ranges over which ordinary linear propagation is forbid-
den, irrespective of direction. These photonic band gaps (PBGs) [1–3] lend themselves to
numerous applications in linear, nonlinear and quantum optics. For instance, in the linear
regime novel optical guiding characteristics through the engineering of defects such as mi-
crocavities, waveguides and their combination into functional elements, such as wavelength
add-drop filters [4, 5] may be realized. Similarly, the incorporation of nonlinear materials
into PBG structures is the basis for novel solitary wave propagation for frequencies inside the
PBG. In the case of lattice–periodic Kerr–nonlinearities, the threshold intensities and sym-
metries of these solitary waves depend on the direction of propagation [6–8], whereas in the
case of nonlinear waveguiding structures embedded in a 2D PBG material, the propagation
characteristics strongly depend on the nature of the waveguides [9]. Finally, the existence
of complete PBGs allows one to inhibit spontaneous emission for atomic transition frequen-
cies, deep in the PBG [1] and leads to strongly non–Markovian effects, such as fractional
localization of the atomic population for atomic transition frequencies in close proximity to a
complete PBG [10, 11].
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The discovery of superrefractive phenomena such as the superprism effect [12, 13] and
the resulting potential applications in telecommunication technology [14, 15] have recently
attracted a lot of attention to the highly anisotropic nature of iso–frequency surfaces in the
photonic band structure. Similarly, the tailoring of photonic dispersion relations and asso-
ciated mode structures, group velocities, group velocity dispersions (GVDs) and effective
nonlinearities through judiciously designed PhCs, allows one to explore regimes of nonlinear
wave propagation in PhCs that hitherto have been virtually inaccessible. For instance, the ex-
istence of flat bands that are characteristic for 2D and 3D PhCs and the associated low group
velocities may greatly enhance frequency conversion effects [16] and may lead to improved
designs for distributed-feedback (DFB) laser systems [16–18]. Photonic crystals with embed-
ded defects, such as microcavities and waveguiding structures, hold tremendous potential for
the creation of photonic integrated circuits.

As in virtually any nano–photonic system, a careful theoretical analysis is of paramount
importance when interpreting experimental data, and when predicting and realizing novel
physical phenomena in PhCs. To date, photonic band structure calculations are used to de-
termine and predict the dispersion relations of perfect, infinitely extended PhCs, and PhCs
with simple defects such as isolated cavities and waveguides. More complex situations such
as transmission and reflection from finite slabs of PhC–material or through waveguide bends
are usually analyzed through direct simulations of Maxwell’s equations, based on Finite–
Difference Time–Domain (FDTD) or Finite Element (FE) methods. While these are perfectly
legitimate approaches, which rest on some 30 years of experience, these techniques do require
substantial computational resources and, as a consequence, modeling has been restricted to
selected small scale PhC circuits. Moreover, certain computationally intensive aspects related
to small scale PhC circuits, such as studies of the effect of fabricational tolerances and the
optimization of device designs, still present serious challenges when working with FDTD or
FE methods.

In this manuscript, we want to illustrate how the natural affinity of electromagnetic wave
propagation in PhCs to the case of electron (wave) transport in semiconducting materials,
allows us to devise a comprehensive and highly efficient theoretical framework for the quali-
tative, as well as quantitative determination of the optical properties of PhCs: Photonic band
structure computations allow us to obtain photonic band structures and associated Bloch func-
tions. Related physical quantities such as densities of states (DOS) and group velocities can
be calculated with little additional work. Nonlinear PhCs can be studied through an appropri-
ate multi–scale analysis that utilizes Bloch functions as carrier waves and leads to a natural
generalization of the well–known slowly varying envelope approximation. Combining band
structure calculations with elements from diffractive optics, enables us to determine the reflec-
tion and transmission properties of finite PhC–slabs. Finally, we show how defect structures
in PhCs can be efficiently treated with the help of photonic Wannier functions. Moreover,
this Wannier function approach allows us to formulate a PhC circuit theory, where a defect
structure is replaced by the optical analogue of an impedance matrix.

1.2 Photonic band structure computation

The goal of photonic band structure computation is the solution of the wave equation for the
perfect PhC, i.e., for an infinitely extended, strictly periodic array of dielectric material. The
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resulting dispersion relation and associated mode structure may then be further processed to
derive related physical quantities such as DOS and group velocities. For simplicity of pre-
sentation, we consider in the remainder of the manuscript only 2D PhCs in the TM–polarized
case. However, we want to emphasize that analogous considerations apply to the case of TE–
polarized radiation in 2D PhCs, as well as to electromagnetic wave propagation in 3D PhCs
and will give references where appropriate.

For TM–polarized radiation in 2D PhCs, the wave equation reduces to a single scalar
equation for the z-component E(�r) of the electric field:

1
εp(�r)

(
∂2

x + ∂2
y

)
E(�r) +

ω2

c2
E(�r) = 0. (1.1)

Here, c denotes the vacuum speed of light and �r = (x, y) denotes a 2D position vector. The
dielectric constant εp(�r) ≡ εp(�r + �R) contains all the structural information of the PhC and
is periodic with respect to the set R = {n1�a1 + n2�a2; (n1, n2) ∈ Z2} of lattice vectors �R,
generated by the primitive translations �ai, i = 1, 2 which serve as a basis for the underlying
PhC lattice. Equation (1.1) represents a differential equation with periodic coefficients and,
therefore, its solutions obey the Bloch–Floquet theorem: The discrete translational symmetry
of the lattice allows us to label the solutions with a wave vector �k that is restricted to the
first Brillouin zone (BZ) of the reciprocal lattice. This back-folding of the dispersion relation
ω(�k) to the first BZ introduces a discrete band index n. The eigenmodes (Bloch functions)
corresponding to eigenfrequency ωn(�k) exhibit the Bloch–Floquet form of modulated plane
waves

En�k(�r) = ei�k�r un�k(�r). (1.2)

Here, un�k(�r + �R) = un�k(�r) is periodic with the lattice. A straightforward way of solving
Eq. (1.1) and (1.2) is to expand all the periodic functions into a Fourier series over the recip-
rocal lattice G

1
εp(�r)

=
∑

�G

η�G ei �G·�r , E�k(�r) =
∑

�G

a
�k
�G

ei(�k+�G)·�r . (1.3)

The Fourier coefficients η�G are given by

η�G =
1

VWSC

∫
WSC

d2�r
1

εp(�r)
e−i �G·�r , (1.4)

where we have designated the volume of the Wigner-Seitz cell (WSC) by VWSC. Inserting
this expansion into Eq. (1.1) and defining the coefficients b

�k
�G
≡ |�k + �G| a�k

�G
, transforms the

differential equation into an infinite matrix eigenvalue problem∑
�G′

|�k + �G||�k + �G′| η�G−�G′ b
�k
�G′ =

ω2
�k

c2
b
�k
�G

, (1.5)

which must be suitably truncated to become accessible to an approximate numerical solution.
Further details of the plane wave method (PWM) for 2D TE and 3D isotropic systems can be
found, for instance, in [19] and for anisotropic 3D systems in [20].
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In Fig. 1.1(b), we show the band structure for TM–polarized radiation in a 2D PhC con-
sisting of a square lattice (lattice constant a) of cylindrical air pores (radius Rpore = 0.475a)
in a silicon matrix (ε = 12) (for details on the fabrication of this structure, we would like
to refer the reader to Chapter 4 of this book). This structure exhibits two complete 2D
bandgaps. The larger, fundamental bandgap (20% of the midgap frequency) extends between
ω = 0.238 × 2πc/a to ω = 0.291 × 2πc/a and the smaller, higher order bandgap (8% of the
midgap frequency) extends from ω = 0.425×2πc/a to ω = 0.464×2πc/a. In the remainder
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Figure 1.1: Density of states (a) and photonic band structure (b) for TM–polarized radiation in a square
lattice (lattice constant a) of cylindrical air pores of radius Rpore = 0.475a in dielectric with ε = 12
(silicon). This PhC exhibits a large fundamental gap extending from ω = 0.238 × 2πc/a to ω =
0.291 × 2πc/a. A higher order band gap extends from ω = 0.425 × 2πc/a to ω = 0.464 × 2πc/a.

of this chapter, this particular PhC will serve as the model problem for which we illustrate our
solid state theoretical approach to the optical properties of PhCs.

1.2.1 Density of states

The photonic dispersion relation ωn(�k) gives rise to a photonic density of states (DOS), which
plays a fundamental role for the understanding of the quantum optical properties of active ma-
terial embedded in PhCs [11]. The photonic DOS N(ω) is defined by “counting” all allowed
states with a given frequency ω

N(ω) =
∑

n

∫
BZ

d2k δ(ω − ωn(�k)). (1.6)

In Fig. 1.1(a) we depict the DOS for our model system, where the photonic band gaps are
manifest as regions of vanishing DOS. Characteristic for 2D systems is the linear behavior for
small frequencies as well as the logarithmic singularities, the so–called van Hove singularities,
associated with vanishing group velocities for certain frequencies inside the bands. However,
for applications to quantum optical experiments in photonic crystals, it is necessary to investi-
gate not only the (overall) availability of modes with frequency ω, but also the local coupling
strength of an emitter at a certain position �r in the PhC to the electromagnetic environment
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provided by the PhC. Consequently, it is the overlap matrix element of the emitter’s dipole
moment to the eigenmodes (Bloch functions) that is determining quantum optical properties
such as decay rates etc. [11]. This may be combined into the local DOS (LDOS), N(�r, ω),
defined as

N(�r, ω) =
∑

n

∫
BZ

d2k |En�k(�r)|2 δ(ω − ωn(�k)). (1.7)

For an actual calculation, the integrals in Eq. (1.6) and Eq. (1.7) must be suitably discretized
and one may again revert to the methods of electronic band structure calculations (see
Ref. [19]).

1.2.2 Group velocity and group velocity dispersion

In order to understand pulse propagation in linear and nonlinear PhCs, it is necessary to obtain
group velocities and the group velocity dispersion (GVD) from the photonic band structure.
In principle, this can be done through a simple numerical differentiation of the band structure,
but in particular for the GVD, this becomes computationally complicated and great care must
be exercised in order to avoid numerical instabilities. Therefore, we want to demonstrate how
to obtain group velocities and GVD through an adaptation of the so–called �k · �p–perturbation
theory (kp–PT) of electronic band structure theory. This approach has been applied to sys-
tems of arbitrary dimensions [21–23] and will be particularly useful for the investigation of
nonlinear effects in PhCs.

With the help of the Bloch–Floquet theorem Eq. (1.2), we may rewrite the wave equation
(1.1) as an equation of motion for the lattice-periodic functions u�k(�r)

(
∆ + 2i∇ · �k − �k2

)
u�k(�r) +

ω2
�k

c2
εp(�r) u�k(�r) = 0 , (1.8)

where, ∆ = ∂2
x + ∂2

y . An inspection of Eq. (1.8) for the lattice-periodic u�k+�q(�r)

(
∆ + 2i∇ · �k − �k2

)
u�k+�q(�r)+�q ·

(
2Ω̂ − �q

)
u�k+�q(�r)+

ω2
�k+�q

c2
εp(�r) u�k+�q(�r) = 0 , (1.9)

at a nearby wave vector�k+�q (|�q| � π/a) suggests that we treat the second term on the l.h.s. as
a perturbation to Eq. (1.8). In writing Eq. (1.9), we have introduced Ω̂ = i(∇+i�k). Comparing
the perturbation series with a Taylor–expansion of frequency ω�k+�q around �k, connects group

velocities �v�k = ∂�kω�k and GVD tensor elements M ij
�k

= ∂ki
∂kj

ω�k, i = 1, 2 to expressions
familiar from second order perturbation theory [21–23]. Explicitly [22], we obtain for the
group velocity

�vn�k =
c2

ωn�k

〈n�k|(−i∇)|n�k〉 , (1.10)
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Figure 1.2: Group velocities for bands 1, 3, and 5 of our model system (see Fig. 1.1). The group veloc-
ities of these bands exhibit extreme variations which may have numerous application in superrefractive
phenomena and classical nonlinear optics. This illustrates the huge parameter space of effective param-
eters accessible with PhCs.

and for the GVD tensor

�q · Mn�k · �q = |�q|2 c2

2ωn�k

〈n�k|n�k〉 − 1
2ωn�k

(
�q · �vn�k

)2
+

2c4

ωn�k

∑
m �=n

〈n�k|(−i�q · ∇)|m�k〉〈m�k|(−i�q · ∇)|n�k〉
ω2

n�k
− ω2

m�k

. (1.11)

Here, we have used the notation
∫

WSC
d2r E∗

n�k
(�r) Ô Em�k(�r) = 〈n�k|Ô|m�k〉 for matrix ele-

ments of the operator Ô between Bloch functions En�k(�r) and Em�k(�r).
Despite their complicated appearance, these expressions can be evaluated rather easily

using standard PWM and obtain very accurate, efficient and numerically stable results. In
Fig. 1.2, we display the variation of the group velocities associated with bands 1, 3, and 5 of
our model system. Clearly visible, are the extreme variations ranging from 0.5c for band 1
in the long wavelength (effective medium) limit, all the way to the almost vanishing group
velocity of band 5 along the entire Γ–X direction. This illustrates the huge parameter space of
effective group velocities that can simultaneously be realized in PhCs.

1.3 Nonlinear photonic crystals

For large intensities of the light propagating through the photonic crystal, we should also
account for the nonlinear polarization PNL(�r, t), representing the nonlinear response of the
materials that comprise the PhC. In this case, Maxwell’s equations for the TM-polarized light
propagating in PhCs take the form(

∂2
x + ∂2

y

)
E(�r, t) − εp(�r)

c2
∂2

t E(�r, t) =
4π

c2
∂2

t PNL(�r, t) . (1.12)

In writing this equation we have neglected the linear dispersion of the constituent materials,
which is usually negligible compared to the dispersion associated with the photonic band
structure.
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The existence of PBGs, the tailoring of photonic dispersion relations and mode structures
through judiciously designed PhCs, represent a novel paradigm for nonlinear wave interac-
tions. To date, only a few works have been carried out for Kerr–nonlinearities [6–8] or for
χ(2)–nonlinearities [16,24] in PhCs. Moreover, the approximations involved in some of these
works seriously limit the applicability of these theories to real PhCs. For instance, the study
of Kerr–nonlinearities in 2D PhCs [6] has been limited to weak modulations in the linear
index of refraction. Similarly, the recent investigation of second harmonic generation in 2D
PhCs [16,24] failed to reproduce the well–known results for the limiting case of homogeneous
materials.

In this section, we outline a systematic approach to quantitative calculations of the optical
properties of nonlinear PhCs that is based on a multi–scale approach [25]. Since optical non-
linearities are generally quite weak, Eq. (1.12) should be solved in a perturbative way, taking
into account that the effect of the nonlinearity accumulates only on time and spatial scales
that are much slower and longer, respectively, than the natural scales of the underlying linear
problem. For electromagnetic wave propagation in PhCs, these natural scales of the linear
problem are determined through the inverse optical period and the associated wavelength of
the light. Therefore, key simplifications to Eq. (1.12) arise from separating the fast from slow
scales in space and time in the electromagnetic field [21]

E(�r, t) = µe1(�r0, �r1, · · · ; t0, t1, · · · ) + µ2e2(�r0, �r1, · · · ; t0, t1, · · · ) + · · · , (1.13)

by formally replacing the space and time variables, �r and t, with a set of independent variables
�rn ≡ µn�r and tn ≡ µnt. Here, we denote the fastest spatial scale corresponding to the
wavelength of the electromagnetic waves propagating in the linear PhC by �r0. Likewise, we
denote the associated fastest temporal scale by t0. Depending on the type of nonlinearity, the
hierarchy is suitably truncated and a closed set of equations is obtained by collecting terms of
equal order in µ. To express the results in terms of the original physical variables, one has to
set µ = 1 at the end of the calculation [21].

As an illustration, we consider the case of the Kerr-nonlinear material, for which the re-
fractive index depends on the light intensity leading to the nonlinear polarization PNL(�r, t) =
χ(3)(�r)E3(�r, t). Here, we have neglected the nonlinear material dispersion. In this case, sub-
stituting Eq. (1.13) into Eq. (1.12) and assuming that third-harmonic generation effects are not
phase-matched and, hence, can be neglected, we obtain in the third order in µ that

e1(�r0, �r1, · · · ; t0, t1, · · · ) = an�k(�z1;�r2, · · · ; t1, · · · ) En�k(�r0) eiωn�kt0 + c.c. , (1.14)

where �z1 ≡ �r1 − �vn�kt1 with the group velocity �vn�k given by Eq. (1.10), the Bloch function
En�k(�r0) represents a carrier wave and the envelope function an�k(�r1, · · · ; t1, · · · ) has to be
determined from the 2D nonlinear Schrödinger equation[

i
(
�vn�k · ∇�r2 + ∂t2

)
+ ∇�z1 · Mn�k · ∇�z1

]
an�k(�z1;�r2 · · · ; t2, · · · )

+ αn�k |an�k(�z1;�r2 · · · ; t2, · · · )|2 an�k(�z1;�r2 · · · ; t2, · · · ) = 0, (1.15)

where the GVD tensor Mn�k is given in Eq. (1.11) and the effective nonlinearity

αn�k = 6π ωn�k

∫
WSC

d2r χ(3)(�r) |En�k(�r)|4 (1.16)
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reflects how the carrier wave En�k(�r) samples the spatial distribution χ(3)(�r) of nonlinear
material within the PhC.

The discussion of the solutions to Eq. (1.15) is outside the scope of the present work and
we refer the reader to references on the inverse scattering theory and other methods [26].
However, we want to emphasize that, as a result of the foregoing analysis, we have obtained a
generalization of the slowly varying envelope approximation. Within this approximation, the
problem of pulse propagation in nonlinear PhCs is mapped onto the problem of an envelope
function propagating in an effective homogeneous medium with group velocity �vn�k, GVD
tensor Mn�k, and effective nonlinearity αn�k that are determined by the carrier wave, which, in
turn, is given by a Bloch function of the linear PhC. Therefore, the effective PhC parameters
can be obtained from band structure theory via Eqs. (1.10), (1.11), and (1.16) and quantitative
investigations become possible. Furthermore, we note that the above considerations are not
limited to 2D TM–polarized radiation and have recently been extended to 3D systems by Bhat
and Sipe [7]. Moreover, the above framework of multi–scale analysis in conjunction with �k·�p–
perturbation theory can be applied to other nonlinear PhC systems such as PhCs consisting of
nonresonant χ(2) [27] material and resonant distributed feedback lasing systems [18]. In the
present case of Kerr–nonlinearities, other effects such as nonresonant soliton interactions can
be considered and lead to interesting applications [28].

1.4 Finite structures

We now consider the problem of how a plane wave couples into a PhC of finite spatial extent.
Our basic approach is to apply the Maxwell continuity conditions to the electric and magnetic
fields inside and outside the crystal. However, unlike in the preceding subsections, we treat the
fields inside the PhC as a linear superposition of plane waves, rather than explicitly using the
Bloch functions of the crystal. We then use a scattering–matrix (S–matrix) to determine the
amplitudes and phases of the fields everywhere in the system. While the S–matrix is slightly
more complicated than the more familiar transfer matrix (T–matrix), it has the advantage that
it deals more effectively with the highly evanescent modes that appear naturally in these types
of problems.

The S–matrix approach for a fully 3D system is described in detail by Whittaker and
Culshaw [29]. However, their formulation does not allow for an effective investigation of lossy
PhCs. Therefore, in this section we indicate how to re–formulate the method of Whittaker and
Culshaw to account for losses. We first consider the model system shown in Figure 1.3, where
light in the x–z plane impinges from the left upon a metallo–dielectric grating structure. The
system is finite in the z–direction, but infinite and periodic in the x–direction, with period a
and fundamental lattice vector of magnitude G = 2π/a. This problem can be described in
terms of a transverse-electric (TE) or a transverse–magnetic (TM) problem, where following
the PhC convention, for the TE (TM) problem the electric (magnetic) field lies in the x–z
plane. In the following we consider the TE problem. We divide the finite structure into a
number of slices along the z–direction. Within each slice, we assume that the structure is
well approximated by a grating that does not vary in the z–direction. For the model system of
Fig. 1.3, this slicing process is fairly straightforward. We assume that the incident light has
frequency ω, and wave vector �k = (kx, kz). Since each slice is periodic in the x–direction,



1.4 Finite structures 9

kz

kx

kinc

0 100 200 300 400
Modes

0.3

0.35

0.4

0.45

|R|
2

x

z

a

Figure 1.3: Model finite structure, in which a gold grating sits atop a buffer layer (green) and a substrate
(blue). Light is incident from the left at an arbitrary angle to the normal, so that the k–vector is separated
into a kx and kz component. Inset is the reflectivity of the structure as a function of the number of modes
used in the solution for the improved choice of Töplitz matrices given in the text (black line) and for the
usual choice (red dashed line, see [29]).

propagation through the system will generate a number of diffracted orders, characterized by
a propagation constant qn. Following the notation of Whittaker and Culshaw [29] , we use
Fourier series to express the x–dependence of the quantities of interest, so that, for example

Hp
y (x, z) =

∑
α

H̃p
y (α, z) ei(kx+αG)x, (1.17)

H̃p
y (α, z) =

1
a

∫ a

0

dx Hp
y (x, z) e−iαGx,

where α is an integer, and where for the remainder of this section the p-superscript indicates
the pth slice. We also define the Töplitz matrices ε̂p

αα′ and η̂p
αα′ , which we discuss in more

detail below, and the diagonal matrix
(
k̂x

)
αα′ = δαα′ (kx + αG). With these definitions, we

write our electric and magnetic fields in the pth slice as

H̃p
y (α, z) =

∑
n

(
ap

neiqp
n(z−zp) + bp

neiqp
n(zp+1−z)

)
φ̃p

n, (1.18)

Ẽp
x (α, z) =

∑
n

1
qp
n

(
ap

neiqp
n(z−zp) − bp

neiqp
n(zp+1−z)

)(
Apφ̃p

n

)
, (1.19)

where zp is the value of z at the left edge of the pth layer, ap
n and bp

n are the amplitudes of
forward and backward propagating light in the nth mode, and where Ap = ω2 − k̂xη̂pk̂x. The
value of Ẽp

z can be determined from Maxwell’s equations. The quantity φ̃p
n (α) is the Fourier

series of the mode in the pth slice associated with the propagation constant qp
n. Using (1.18)

and (1.19) in Maxwell’s equations, we find an eigenvalue equation for q and φ̃:

ε̂
(
ω2 − k̂xη̂k̂x

)
φ̃ = q2φ̃, (1.20)
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where we have dropped the p–superscripts. This equation is a reduced version of Eq. (3.7) in
Whittaker and Culshaw [29].

The eigenvalue problem (1.20) is solved by retaining a definite number N of plane waves
in the Fourier series, so that the matrices involved in (1.20) are size N × N . As N → ∞,
the Töplitz matrices ε̂p and η̂p can be generated directly from the Fourier series of εp (x)
and ηp = 1/εp (x). However, for smaller values of N one must be slightly careful because
these Töplitz matrices facilitate the transition from the real–space representation of Maxwell’s
equations to the Fourier space representation. When executing this transition, one encounters
quantities such as ε (x)Ex (x), for which the Fourier transform is most logically

ε (x)Ex (x) →
∑
α′

ε̃(α − α′)Ẽx (α′) , (1.21)

where ε̃(α − α′) is determined by the Fourier integral of the real-space dielectric constant
ε (x). This leads to the definition of the Töplitz matrix ε̂αα′ = ε̃ (α − α′). However, such
a formulation ignores the fact that in many of our slices, the real–space functions ε (x) and
Ex (x) are discontinuous. In such a situation, Li [30] has shown that the expansion (1.21) is
inappropriate. Following Li’s approach, the appropriate Töplitz matrices of our TE problem
are given by first defining the intermediate matrices

εαα′ = ε̃ (α − α′) , ηαα′ = η̃ (α − α′) , (1.22)

and then defining the final matrices

ε̂ = (η)−1 , η̂ = (ε)−1 . (1.23)

This choice of Töplitz matrices is also appropriate for the full 3D problem.
Once the eigenvalue problem (1.20) is solved, the fields within a given slice are charac-

terized by the values of ap
n and bp

n. The only remaining difficulty is the application of the
Maxwell continuity conditions (that Hy and Ex must be continuous) at each interface. Typ-
ically, this is done by constructing a T–matrix that ultimately relates the set

(
a0

n, b0
n

)
to the

set
(
aP

n , bP
n

)
, where p = P indexes the last layer of interest. However, it is numerically more

stable to build an S–matrix that relates waves entering the structure
(
a0

n, bP
n

)
to those leav-

ing the structure
(
aP

n , b0
n

)
. An appropriate methodology for building this S-matrix is given in

Whittaker and Culshaw [29].
In the inset of Figure 1.3, we plot the total reflection from the metallo–dielectric grating

structure. For simplicity we assume that the structure has a semi–infinite substrate with index
of refraction n = 1.46. We also include a 20 nm-thick buffer layer with n = 1.95, and
a 20 nm–thick grating composed of gold, for which the frequency-dependent value of n is
taken from ref. [31]. The elements of the grating are 32 nm wide, and have a period in
the x–direction of 400 nm. We simulate normally–incident TE–polarized light with vacuum
wavelength 650 nm. The solid curve uses the Töplitz matrices suggested in (1.23), while the
red dashed curve uses those suggested by Whittaker and Culshaw [29]. The results with the
new Töplitz matrices are displaying a significantly improved convergence behavior. We have
also verified that the new Töplitz matrices are significantly better for the analysis of scattering
loss in finite 3D PhCs, such as the Woodpile PhCs currently being fabricated via two–photon
photopolymerization (see Chapter 9 in this book).
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Figure 1.4: Left: Sketch of a typical setup for characterizing 2D PhC–slabs in Litrow–geometry. Right:
Calculation of the reflection spectra (intensity) in Litrow–geometry for our model system when the 2D
PhC is oriented along the Γ–M direction (see left panel). In this setup, only light reflected into the
direct backscattering direction is collected. Clearly visible, are the different diffraction orders that are
“decorated” with bulk PhC–effects. The parameters of the PhC–slab are given in the text.

We now use the S-matrix technique to consider transmission and reflection in the PhC
model system, assuming that it has been cleaved along the Γ–M direction, such that it is fi-
nite in the z–direction but infinite and periodic in the x–direction (see Fig. 1.4, left panel).
We further assume that the cleaving at z = 0 and z = L cut through the center of the air
pores. The cleaved structure includes 20 unit cells along the z–direction. To accurately model
the circular pores, we divide the PhC into a large number of very thin layers, each of which
is homogeneous along the z–direction. We find that the resulting staircase approximates the
shape of the pores sufficiently well if we use about 100 layers per pore. In Fig. 1.4 right
panel, we display the calculated reflection spectra (intensity) for this 2D–PhC slab in Litrow–
geometry. Clearly visible, are the different diffraction orders that are “decorated” with bulk
PhC–effects: The periodicity along the x–axis makes this PhC–slab an effective grating with
a complicated frequency–dependent coupling to the incoming plane wave. For certain fre-
quencies of the incoming radiation, there is no mode to which it could couple. As a result, the
wave is completely reflected from the slab, albeit not entirely into the backscattering direction
(incomplete blazing). For other frequencies, the light partially couples to propagating Bloch
modes inside the PhC–slab, leading to a reduction in reflection. The strength of this coupling
depends on the overlap of the incoming plane wave with a Bloch function at that frequency
and the parallel crystal momentum, and therefore, depends both on the exact surface termi-
nation as well as on the symmetry of the Bloch function. To illustrate the latter point, we
have calculated the frequency dependence of the total transmission through the PhC–slab for
normal incidence. In Fig. 1.5, we compare these results with the corresponding band structure
along the Γ–M direction. The wildly ranging coupling strengths are clearly visible, leading
to corresponding variations in the total transmission. Also visible are the sharp Fabry-Perot
resonances associated with multiple reflections at the front and end surfaces. However, while
the total transmission for frequencies just above ωa/2πc = 0.5 is almost zero due to a very
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weak but non-vanishing coupling constant, there exists an extended frequency band just be-
low ωa/2πc = 0.8 where the total transmission vanishes exactly although the photonic band
structure suggests the presence of a band. This apparent discrepancy is resolved when consid-
ering the symmetry of the corresponding Bloch functions: The Bloch functions for the band
in question exhibit an odd parity across the slab surface. Because the incoming plane wave by

Figure 1.5: Comparison between transmission calculations (normal incidence) through a 2D PhC–slab
oriented along the Γ–M direction with the corresponding photonic band structure for our model system.
Uncoupled bands are marked by dashed lines. Bloch functions for a coupled and an uncoupled band are
shown in the left panel, revealing the odd parity of the uncoupled bands. The direction of the incoming
radiation is indicated by yellow arrows and the surface termination of the PhC is represented through the
vertical dashed lines.

construction has an even parity across the slab surface, we have that in this case the coupling
between plane wave and Bloch function vanishes exactly due to an incompatible symmetry.
This is a manifestation of a profound difference between PhCs and electronic crystals: Al-
though both types of crystals provide Bloch functions (modes), the PhC modes are generally
“empty”, i.e., contain no photons. In order to transmit energy through a PhC, one has to cou-
ple an external radiation source to PhC modes. As a consequence, care must be taken when
interpreting transmission and reflection data from PhC–slabs. However, the existence of these
so–called uncoupled bands can always be inferred through a symmetry analysis [16,32] of the
photonic Bloch functions. In Fig. 1.5, we have indicated the uncoupled bands for the Γ–M
direction of our model system with dashed lines.

1.5 Defect structures in photonic crystals

In electronic micro–circuits, electrical currents are guided by thin metal wires where electrons
are bound within the cross section of the wire by the so–called work function (confining
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potential) of the metal. As a result, electrical currents follow along the path prescribed by the
wire without escaping to the background. The situation is very different for optical waves.
Although optical fibers guide light over long distances, microscopic fiber–circuits for light
do not exist, because empty space is already an ideal conductor of light waves. The light
in an optical fiber can easily escape into the background electromagnetic modes of empty
space if the fiber is bent or distorted on a microscopic scale. PBGs in the band structure of
PhCs remove this problem by removing all the background electromagnetic modes over the
relevant band of frequencies. As a consequence, light paths can be created inside a PBG
material in the form of engineered waveguide channels. In terms of the resources required for
the fabrication of these structures and the tremendous flexibility in the choice of parameters,
the ability to design blueprints of PhC–based micro–optical devices and to investigate the
effects of fabricational tolerances on the performance of the ideal structure, becomes both an
economical and a practical must. Perhaps, even more important may be the investigation of
novel operating principles of such devices.

As alluded to above, the overwhelming majority of theoretical investigations of wave-
guiding to date has been carried out using FDTD and/or FE techniques. However, applying
general purpose methodologies such as FDTD or FE methods to defect structures in PhCs,
largely disregards information about the underlying PhC structure which is readily available
from photonic band structure computation. As a result, only relatively small systems can be
investigated and the physical insight remains limited.

1.5.1 Maximally localized photonic Wannier functions

A more natural description of localized defect modes in PhCs consists of an expansion of the
electromagnetic field into a set of localized basis functions which have encoded into them
all the information of the underlying PhC. Therefore, the most natural basis functions for the
description of defect structures in PhCs are the so–called photonic Wannier functions Wn�R(�r),
which are formally defined through a lattice Fourier transform

Wn�R(�r) =
VWSC

(2π)2

∫
BZ

d2�k e−i�k �R En�k(�r) (1.24)

of the extended Bloch functions, En�k(�r). The above definition associates the photonic Wan-
nier function Wn�R(�r) with the frequency range covered by band n, and centers it around the

corresponding lattice site �R. In addition, the completeness and orthogonality of the Bloch
functions translate directly into corresponding properties of the photonic Wannier functions.
Computing the Wannier functions directly from the output of photonic band structure pro-
grams via Eq. (1.24) leads to functions with poor localization properties and erratic behavior
(see, for instance, Fig. 2 in ref. [33]). These problems originate from an indeterminacy of
the global phases of the Bloch functions. It is straightforward to show that for a group of
several bands (we define their number as NW) there exists, for every wave vector �k, a free
unitary transformation between the bands which leaves the orthogonality relation of Wannier
functions unchanged. A solution to this unfortunate situation is provided by recent advances
in electronic band structure theory. Marzari and Vanderbilt [34, 35] have outlined an efficient
scheme for the computation of maximally localized Wannier functions by numerically de-
termining a unitary transformation between the bands that minimizes an appropriate spread
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Figure 1.6: Photonic Wannier functions, Wn�0(�r), for the six bands that are most relevant for the de-
scription of the localized defect mode shown in Fig.1.7(a). These optimally localized Wannier functions
have been obtained by minimizing the corresponding spread functional, Eq. (1.25). Note, that in contrast
to the other bands, the Wannier center of the eleventh band is located at the air pore. The parameters of
the underlying PhC are the same as those in Fig. 1.1.

functional F

F =
NW∑
n=1

[
〈n�0| r2 |n�0〉 − (〈n�0|�r |n�0〉)2

]
= Min . (1.25)

Here we have introduced a shorthand notation for matrix elements according to

〈n�R| f(�r) |n′ �R′〉 =
∫

R2
d2r W ∗

n�R
(�r) f(�r) εp(�r) Wn′ �R′(�r) , (1.26)

for any function f(�r). For instance, the orthonormality of the Wannier functions in this nota-
tion reads as

〈n�R| |n′ �R′〉 =
∫

R2
d2r W ∗

n�R
(�r) εp(�r) Wn′ �R′(�r) = δnn′δ�R�R′ . (1.27)

The field distributions of the optimized Wannier functions belonging to the six most relevant
bands of our model system are depicted in Fig. 1.6 (see also the discussion in Section 1.5.3).
Their localization properties as well as the symmetries of the underlying PhC structure are
clearly visible. It should be noted that the Wannier centers of all calculated bands (except
of the eleventh band) are located halfway between the air pores, i.e. inside the dielectric
(see Refs. [34, 35] for more details on the Wannier centers). It should be pointed out that
instead of working with the electric field [33,36,37], Eq. (1.1), one may equally well construct
photonic Wannier functions for the magnetic field, as recently demonstrated by Whittaker and
Croucher [38].
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1.5.2 Wannier description of defect structures

The description of defect structures embedded in PhCs starts with the corresponding wave
equation in the frequency domain

∇2E(�r) +
(ω

c

)2

{εp(�r) + δε(�r)}E(�r) = 0 . (1.28)

Here, we have decomposed the dielectric function into the periodic part εp(�r), and the contri-
bution δε(�r), that describes the defect structures. Within the Wannier function approach, we
expand the electromagnetic field according to

E(�r) =
∑
n,�R

En�R Wn�R(�r) , (1.29)

with unknown amplitudes En�R. Inserting this expansion into the wave equation (1.28) and
employing the orthonormality relations, Eq. (1.27), leads to the basic equation for lattice mod-
els of defect structures embedded in PhCs∑

n′, �R′

{
δnn′δ�R�R′ + Dnn′

�R�R′

}
En′ �R′ =

( c

ω

)2 ∑
n′, �R′

Ann′
�R�R′En′ �R′ . (1.30)

The matrix Ann′
�R�R′ depends only on the Wannier functions of the underlying PhC and is defined

by

Ann′
�R�R′ = −

∫
R2

d2�r W ∗
n�R

(�r)∇2 Wn′ �R′(�r) . (1.31)

The localization of the Wannier functions in space leads to a very rapid decay of the magnitude
of matrix elements with increasing separation |�R − �R′| between the lattice sites, effectively
making the matrix Ann′

�R�R′ sparse. Furthermore, it may be shown that the matrix Ann′
�R�R′ is Her-

mitian and positive definite. Similarly, once the Wannier functions of the underlying PhC are
determined, the matrix Dnn′

�R�R′ depends solely on the overlap of these functions, mediated by
the defect structure:

Dnn′
�R �R′ =

∫
R2

d2�r W ∗
n�R

(�r) δε(�r) Wn′ �R′(�r) . (1.32)

As a consequence of the localization properties of both the Wannier functions and the defect
dielectric function, the Hermitian matrix Dnn′

�R �R′ is also sparse. In the case of PhCs with inver-
sion symmetry, εp(�r) ≡ εp(−�r), the Wannier functions can be chosen to be real. Accordingly,
both matrices, Ann′

�R�R′ and Dnn′
�R �R′ become real symmetric matrices.

Depending on the nature of the defect structure, we are interested in (i) frequencies of
localized cavity modes, (ii) dispersion relations for straight waveguides, or (iii) transmission
and reflection through waveguide bends and other, more complex defect structures. In the
following, we consider each of these cases separately.
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1.5.3 Localized cavity modes

As a first illustration of the Wannier function approach, we consider the case of a simple
cavity created by infiltrating a single pore at the defect site �Rdef with a material of dielectric
constant εdef, as shown in the inset of Fig. 1.7(a). In this case, we solve Eq. (1.30) directly
as a generalized eigenvalue problem for the cavity frequencies that lie within the PBG, and
reconstruct the cavity modes from the corresponding eigenvectors.
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Figure 1.7: (a) Frequencies of localized cavity modes created by infiltrating a single defect pore with a
material of dielectric constant εdef (see inset). The results of the Wannier function approach (diamonds)
using NW = 10 Wannier functions per unit cell, are in complete agreement with numerically exact
results of the super–cell calculations (full line). The parameters of the underlying PhC are the same as
those in Fig. 1.1. (b) Electric field distribution for the cavity mode with frequency ω = 0.290× 2πc/a,
created by infiltrating the pore with a polymer of εdef = 2.4.

In Fig. 1.7(a) we compare the frequencies of these cavity modes calculated from Eq. (1.30)
with corresponding calculations using PWM–based super–cell calculations [39]. Upon in-
creasing εdef, a non–degenerate cavity mode with monopole symmetry emerges from the up-
per edge of the bandgap. The results of the Wannier function approach using the NW = 10
most relevant Wannier functions per unit cell in Eq. (1.30), are in complete agreement with
numerically exact results of the super–cell calculations. In Fig. 1.7(b), we depict the corre-
sponding mode structure for a monopole cavity mode created by infiltration of a polymer with
εdef = 2.4 into the pore. The convergence properties of the Wannier function approach should
depend on the nature and symmetry properties of the cavity modes under consideration. To
discuss this issue in greater detail, it is helpful to define a measure Vn of the strength of the
contributions to a cavity mode from the individual Wannier function associated with band n
via Vn =

∑
�R |En�R|2. In Fig. 1.8, we display the dependence of the parameter Vn on the band

index n for the cavity modes shown in Fig. 1.7, for two values of the defect dielectric con-
stant, εdef = 2.4 (solid line) and εdef = 8 (dashed line), respectively. In both cases, the most
relevant contributions to the cavity modes originate from the Wannier functions belonging to
bands n = 1, 2, 3, 5, 11 and 19, and all contributions from bands n > 20 are negligible. These
most relevant Wannier functions for our model system are shown in Fig. 1.6. In fact, fully
converged results are obtained when we work with the 10 most relevant Wannier functions
per unit cell (for a comparison with numerically exact super–cell calculations see Fig. 1.7(a)).
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Figure 1.8: The strength Vn of the individual contributions from the Wannier functions of the lowest 20
bands (index n) to the formation of the cavity modes depicted in Fig. 1.7. The Wannier functions with
Vn ≤ 10−3 may be safely left out of account. Arrows indicate the six most relevant Wannier functions
depicted in Fig. 1.6. The parameters of the underlying PhC are the same as those in Fig. 1.1.

1.5.4 Dispersion relations of waveguides

The efficiency of the Wannier function approach is particularly evident when considering de-
fect clusters consisting of several defect pores. In this case, the defect dielectric function δε(�r),
can be written as a sum over positions �Rm, of the individual defect pores so that Eq. (1.32)
reduces to a sum

Dnn′
�R �R′ =

∑
m

D(m)nn′
�R−�Rm, �R′−�Rm

, (1.33)

over the matrix elements D(m)nn′
�R,�R′ of the individual defects (see discussion in Ref. [33] for

more details). Therefore, for a given underlying PhC structure, it becomes possible to build
up a database of matrix elements D(m)nn′

�R,�R′ , for different geometries (radii, shapes) of de-
fect pores, which allows highly efficient defect computations through simple matrix assembly
procedures. This is in strong contrast to any other computational technique known to us.

Arguably the most important types of defect clusters in PhCs are one or several ad-
jacent straight rows of defects. Properly designed, such defect rows form a PhC wave-
guide which allows the efficient guiding of light for frequencies within a PBG [40, 41]. Due
to the one-dimensional periodicity of such a waveguide, its guided modes E(p)(�r |ω) =∑

n,�R E
(p)

n�R
(ω) Wn�R(�r), obey the 1D Bloch-Floquet theorem

E
(p)

n�R+�sw
(ω) = ei�kp(ω)�sw E

(p)

n�R
(ω) , (1.34)

and thus they can be labeled by a wave vector �kp(ω), parallel to the waveguide director
�sw=w1�a1 + w2�a2, where �a1 = (a, 0) and �a2 = (0, a) are the primitive lattice vectors of
the PhC, and integers w1 and w2 define the direction of the waveguide (for instance, an x–axis
directed W1–waveguide is described through w1 = 1 and w2 = 0). Commonly, investigations
of PhC waveguides consist of calculations of the dispersion relations �kp(ω), of all the guided
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Figure 1.9: Dispersion relations of the propagating guided mode for PhC waveguides consisting of (a)
one row (W1) and (b) two rows (W2) of defect pores infiltrated with a polymer with εdef = 2.4. The
calculations within the Wannier function approach (diamonds) based on Eqs. (1.30) and (1.34), in which
we accounted for the interaction of 5 nearest pores along the waveguide and used 10 most relevant
Wannier functions per unit cell, are in complete agreement with the results of supercell calculations
(solid lines). The gray areas represent the projected band structure of the underlying model PhC (see
Fig. 1.1). The red circles in the insets indicate the positions of the infiltrated pores.

modes which can be obtained by substituting Eq. (1.34) into Eq. (1.30) as we have described
in detail in Ref. [33].

To date, investigations of straight PhC waveguides have concentrated on the calculation
of dispersion relations for propagating guided modes with real wave vectors kp(ω), only.
Such calculations can also be carried out accurately by employing the supercell technique. In
Fig. 1.9, we display the dispersion relations for the propagating guided modes of the W1–
and W2–waveguides created by infiltrating a polymer into one row and two rows of pores,
calculated within the Wannier function approach. The results of these calculations are fully
converged and in complete agreement with the results of plane–wave based supercell compu-
tations. Similar to the calculations of complex cavity structures, the calculations of waveguide
dispersion relations within the Wannier function approach require fairly minimal computa-
tional resources in comparison of the supercell technique.

We would like to emphasize that, in contrast to the supercell technique, the Wannier func-
tion approach enables us to also obtain the dispersion relations for evanescent guided modes
with complex wave vectors �kp(ω). Since such modes grow or decay along the waveguide
direction, they are mainly irrelevant in perfectly periodic straight waveguides. However, they
start to play an important role as soon as the perfect periodicity of the waveguide is broken
either through imperfections due to fabricational tolerances, or through the deliberate creation
of deviations from periodicity such as bends or coupled cavity–waveguide systems for Wave-
length Division Multiplexing (WDM) applications. In such cases, these evanescent guided
modes give rise to light localization effects and determine the non–trivial transmission and
reflection properties of PhC circuits [33, 42] as we will discuss below.
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1.5.5 Light propagation through photonic crystal circuits

In this section, we demonstrate that the Wannier function approach provides an efficient simu-
lation tool for the description of light through PhC circuits which allows one to overcome most
of the limitations related to FDTD or FE methods. As an illustration, we consider light prop-
agation through two-port PhC circuits such as waveguide bends or coupled cavity–waveguide
systems. The common feature of these devices is that two semi-infinite straight PhC wave-
guides act as leads that are connected through a finite–sized region of defects. In this case,
light propagation through the device at frequency ω is governed by Eq. (1.30), which should be
truncated (to obtain an equal number of equations and unknowns) by prescribing certain val-
ues to the expansion coefficients En�R, at some sites inside the waveguiding leads. Since these
values determine the amplitudes of the incoming light, it is physically more transparent to
express the expansion coefficients En�R within the leads through a superposition of the guided

modes �Φ(p)(ω) with wave vectors �kp(ω) of the corresponding infinite straight waveguide. In a
numerical implementation, this is facilitated by replacing the expansion coefficients En�R for

all lattice sites �R inside each waveguiding lead Wi, i = 1, 2, according to

Ewi

n�R
=

N∑
p=1

u (p)
wi

(ω)E(p)

n�R
(ω) +

2N∑
p=N+1

d (p)
wi

(ω)E(p)

n�R
(ω) , (1.35)

where u
(p)
wi and d

(p)
wi are amplitudes of the guided modes, and we assume that all 2N guided

modes are ordered in the following way: p = 1 to N are occupied by the propagating guided
modes with Re[kp] > 0 and evanescent guided modes with Im[kp] > 0, whereas p = N + 1
to 2N are occupied by the propagating guided modes with Re[kp] < 0 and evanescent guided

modes with Im[kp] < 0. Assuming that the amplitudes, u
(p)
w1 and d

(p)
w2 , of all the propagating

(evanescent) guided modes which propagate (decay) in the direction of the device are known
(they depend on the purpose of our calculation or on the experimental setup), we can now
substitute Eq. (1.35) into Eq. (1.30) and, solving the resulting system of coupled equations,
find the unknown expansion coefficients En�R for the sites �R inside the domain of the device
(which can be used, e.g., for visualization of the field propagation through the device), and the
amplitudes u

(p)
w2 and d

(p)
w1 , of all outgoing propagating and growing evanescent guided modes.

In Ref. [33] we have demonstrated, by comparison with the FDTD calculations [40], that
the results of such transmission calculations based on the Wannier function approach are in-
deed very accurate and agree extremely well with FDTD calculations. Now, in Fig. 1.10,
we present the results of Wannier function calculations of the transmission spectra for four
different bend geometries with attached single–mode waveguide leads (see Fig. 1.9) that are
embedded in our model PhC.

The efficiency of the Wannier function approach for transmission calculations becomes
apparent when considering that – once the Wannier functions for the underlying PhC have
been obtained – the calculation of a single data point in the reflection spectra of Fig. 1.10
reduces to the solution of a single sparse system of some 800 equations, which even on a
laptop computer takes only a few seconds. Therefore, the Wannier function approach outlined
above will (i) enable a reverse engineering of defect structures with prescribed functionality
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Figure 1.10: Transmission spectra |T (ω)|2, for four different bend geometries embedded in our 2D
model PhC. The results of the Wannier function approach are obtained with NR = 5, L = 5, and the
NW = 10 most relevant Wannier functions. The parameters of the underlying PhC are the same as those
in Fig. 1.1.

and (ii) allow detailed studies regarding the robustness of successful designs with respect to
fabricational tolerances. Moreover, the Wannier function approach can be straightforwardly
applied, with comparable efficiency, to investigations of the transmission spectra through PhC
circuits made from highly dispersive and/or nonlinear materials. Of paramount importance is
the fact that, in contrast to the FDTD or FE methods, the Wannier function approach permits
one to accurately and efficiently calculate the complete scattering matrices of PhC devices
[33]. This allows us to construct a PhC circuit theory in which individual devices are replaced
by simple equivalent scattering matrices, which are assembled by simple scattering matrix
multiplication rules to form the scattering matrix of large-scale circuits [43]. We want to
emphasize that in some sense, these scattering matrices can be regarded as the optical analogue
of the impedance matrices associated with multi-port devices in microwave technology [44].

1.6 Conclusions

In summary, we have outlined a framework based on solid state theoretical methods that allows
one to qualitatively and quantitatively treat wave propagation in PhCs. Photonic band struc-
ture computation of the infinitely extended PhC provides the input necessary to efficiently
obtain the properties of defect structures, embedded in PhCs via expansions into localized
Wannier functions. This allows us to determine effective parameters such as DOS, group ve-
locities, GVD tensors, and effective nonlinearities. The description of nonlinear PhCs through
the generalized slowly varying envelope approximation allows us to investigate such systems
using a limited number of effective parameters with transparent physical meaning. Finite
structures can be treated through combining techniques from diffractive optics with photonic
band structure computations. In particular, the efficiency of the Wannier function approach to
defect structures in PhCs allows investigations of PhC circuits which, to date, are beyond the
reach of standard simulation techniques such as FDTD or FE methods.
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