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Self-Trapping and Stable Localized Modes in Nonlinear Photonic Crystals
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We predict the existence of stable nonlinear localized modes near the band edge of a two-dimensional
reduced-symmetry photonic crystal with a Kerr nonlinearity. Employing the technique based on the
Green function, we reveal a physical mechanism of the mode stabilization associated with the effective
nonlinear dispersion and long-range interaction in the photonic crystals.
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Photonic crystals are usually viewed as an optical analog
of semiconductors that modify the properties of light simi-
larly to a microscopic atomic lattice that creates a semicon-
ductor band gap for electrons [1]. It is therefore believed
that by replacing relatively slow electrons with photons as
the carriers of information, the speed and bandwidth of
advanced communication systems will be dramatically in-
creased, thus revolutionizing the telecommunication indus-
try. To employ the high-technology potential of photonic
crystals, it is crucially important to achieve a dynamical
tunability of their band gap [2]. This idea can be real-
ized by changing the light intensity in the so-called non-
linear photonic crystals, having a periodic modulation of
the nonlinear refractive index [3]. Exploration of nonlinear
properties of photonic band-gap (PBG) materials may open
new applications of photonic crystals for all-optical sig-
nal processing and switching, suggesting an effective way
to create tunable band-gap structures operating entirely
with light.

One of the important ideas to control all-optical switch-
ing in the nonlinear regime is to explore the possibility of
nonlinearity-induced self-trapping and nonlinear localized
modes in photonic crystals. The existence of nonlinear
localized modes with frequencies in the forbidden gaps
is usually associated with gap solitons, studied for one-
dimensional [4] and even two-dimensional (2D) models
[5], in the framework of the coupled-mode theory. The va-
lidity of the coupled-mode theory is usually restricted by
a weak modulation of the refractive index (the so-called
shallow-grating case), and therefore this theory is not di-
rectly applicable to PBG crystals where the modulation
of the refractive index is of the order of its mean value.
This observation calls for a systematic analysis of the (still
open) problem of stable self-trapping and nonlinear local-
ized modes in PBG materials, where the effects of discrete-
ness [6] and long-range interaction [7] have been recently
shown to be of crucial importance.

Nonlinear localized modes (also called intrinsic lo-
calized modes or discrete breathers) are associated with
the energy localization that may occur in the absence of
any disorder and are due solely to nonlinearity [8]. Such
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nonlinear modes can be easily identified as approximate
(or sometimes exact) analytical solutions of coupled-
oscillator nonlinear lattice models and also in numerical
molecular-dynamics simulations, but only very recently
the first observations of spatially localized nonlinear
modes have been reported in physical systems of a very
different nature [9]. The main purpose of this Letter is
to predict the existence of nonlinear localized modes,
analogous to gap solitons in the continuum limit, in 2D
nonlinear photonic crystals, and to describe their unique
properties including stability.

We study nonlinear properties of 2D photonic crystals,
assuming that their symmetry is reduced by inserting the
rods made from a Kerr-type nonlinear dielectric material
characterized by the third-order nonlinear susceptibility
x �3�. Specifically, we consider a periodic square lattice
with the lattice spacing a which consists of two types of
infinitely long cylindrical rods: the rods of radius r1 made
from a linear material and placed at the corners of the lat-
tice, and the rods of radius r2 �r2 , r1� made from a non-
linear material and placed at the center of each unit cell
(see top right inset in Fig. 1). Linear properties of such
photonic crystals are known [10].

We assume that the rods are parallel to the x3 axis,
so that the system is characterized by the dielectric
constant e�x� � e�x1, x2�. In this case the evolution
of the E-polarized (with the electric field Ejjx3) light
propagating in the �x1, x2� plane is governed by the scalar
wave equation

=2E�x, t� 2
1
c2 ≠2

t �e�x�E� � 0 , (1)

where =2 � ≠2
x1

1 ≠2
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and E is the x3 component
of E. Taking the electric field in the form E�x, t� �
e2ivtE�x, tjv�, where E�x, tjv� is a slowly varying
envelope, i.e., ≠2

t E�x, tjv� ø v≠tE�x, tjv�, Eq. (1) can
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In the stationary case, i.e., when the right-hand side van-
ishes, Eq. (2) reduces to an eigenvalue problem that can
© 2001 The American Physical Society
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FIG. 1. Band-gap structure of the E-polarized light in a 2D
reduced-symmetry photonic crystal with r1 � 0.1a, r2 �
0.05a, and e � 11.4. Solid lines are calculated directly from
Eq. (1) by the MIT Photonic-Bands program [11], whereas the
dashed line is found from linearized Eq. (5). The top right inset
shows a cross-sectional view of the photonic crystal and the
bottom right inset shows the corresponding Brillouin zone.

be solved in the linear limit [1], i.e., when e�x� does not
depend on the light intensity. In this case, the frequency
spectrum has a band-gap structure shown in Fig. 1. It sup-
ports two band gaps, the lower of which extends from
v � 0.426 3 2pc�a to v � 0.453 3 2pc�a.

Low-intensity light cannot propagate through a photonic
crystal if the light frequency falls into a band gap. How-
ever, it has been recently suggested [5] that in the case
of a 2D periodic medium with a Kerr-type nonlinear ma-
terial, high-intensity light with the frequency inside the
photonic gap can propagate in the form of finite energy
solitary waves—2D gap solitons. Such solitary waves
were analyzed in the framework of the coupled-mode con-
tinuum-limit equations valid for a weak modulation of the
dielectric constant e�x�. However, in real photonic crystals
the modulation of e�x� is comparable to its average value,
so that the existence and stability of localized modes in
such structures is still an open problem.

More specifically, the coupled-mode equations are valid
if and only if the band gap Dv2 is vanishingly small, i.e.,
Dv2 � A2 where A is an effective amplitude of the mode
that is treated in the multiscale asymptotic expansions [12]
as a small parameter. If we apply this model to describe
nonlinear modes in a wider gap (see, e.g., discussions in
Ref. [12]), we obtain a 2D cubic nonlinear Schrödinger
(NLS) equation known to possess no stable localized solu-
tions. Moreover, 2D localized modes of the coupled-mode
equations are expected to possess an oscillatory instability
recently discovered for a broad class of 1D coupled-mode
equations [13]. Thus, it is clear that if nonlinear local-
ized modes do exist in realistic PBG materials, their ex-
istence and stability should be associated with different
physical mechanisms not accounted for by simplified con-
tinuum coupled-mode models.

To study the nonlinear modes in such structures, we con-
sider the nonlinear rods of small radius r2 as “defects” em-
bedded into the linear photonic crystal formed by a square
lattice of the rods of larger radius r1 (“diatomic crystal”).
Then, writing the dielectric constant e�x� as a sum of two
periodic terms, e�x� � e1�x� 1 e2�xjE�, where e1�x� de-
scribes the linear photonic crystal and e2�xjE� corresponds
to a lattice of nonlinear defect rods, one can present Eq. (2)
in the form [6,7]

E�x, tjv� �
Z

d2yG�x, yjv�L̂ E�y, tjv� , (3)

where we introduce the Green function G�x, yjv� of the
linear photonic crystal (see, e.g., Ref. [14] for its proper-
ties) and the linear operator L̂ is defined by

L̂ �
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v

c
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Now, using the indices n and m for numbering the non-
linear rods in the x1 and x2 directions, we can describe
their positions by the vectors xn,m � na1 1 ma2, where
a1 and a2 are the primitive lattice vectors of the 2D pho-
tonic crystal, and write

e2�xjE� � 	e�0�
2 1 x �3�jE�x, tjv�j2


3
X
n,m

u�x 2 xn,m� ,

where u�x� � 1 for jxj # r2 and u�x� � 0 otherwise. The
parameter e

�0�
2 is the dielectric constant of the defect rods in

the linear limit, while the term x �3�jEj2 takes into account
a contribution due to the Kerr nonlinearity. If the radius
r2 of the defect rods is sufficiently small, the electric field
E�x, tjv� inside them is almost constant, and Eq. (3) can
be approximated [6,7] by the discrete nonlinear equation

is
≠
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2
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for the amplitudes of the electric field En,m�tjv� �
E�xn,m, tjv� calculated at the defect rods. The parameter
s and the coupling coefficients

Jn,m�v� �
≥
v

c

¥2 Z
r2

d2yG�x0,0, xn,m 1 yjv� (6)

are determined by the Green function G�x, yjv� which
we calculate numerically by the FDTD method [15]
with the spatial step Dx � 0.01 to 0.03 and time step
Dt � 0.005, for a 24a 3 24a lattice. The Green func-
tion and, therefore, the coupling coefficients Jn,m�v�
in 2D photonic crystals are usually long-ranged func-
tions. For instance, for the case of Fig. 2 we obtain
Jn,0 � 0.012�21�n exp�20.66jnj� for n $ 2, so that one
should take into account the interaction between at least
10 neighbors to achieve a good accuracy for the spectrum.
By this means, Eq. (5) is a nontrivial long-range gener-
alization of the 2D discrete NLS equations extensively
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FIG. 2. Coupling coefficients Jn,m�v� for the photonic crystal
depicted in Fig. 1. The frequency v � 0.4456 3 2pc�a is
in the lower band gap. The contribution from J0,0 � 0.039 is
not shown.

studied during the last decade [16]. We have checked the
accuracy of the approximation provided by Eq. (5) by
solving it in the linear limit. The low-frequency part of
this dependence for e

�0�
2 � 11.4 is depicted in Fig. 1 by a

dashed line; it has a minimum at v � 0.446 3 2pc�a,
which is in a good agreement with the band edge cal-
culated directly from Eq. (2). This lends support to the
validity of Eq. (5) and allows us to use this discrete model
for studying nonlinear properties.

Stationary nonlinear localized modes have been calcu-
lated numerically by the Newton-Raphson iteration scheme
on a 170a 3 170a lattice. Assuming that the linear rods
are made from GaAs, whereas the nonlinear rods are made
from some nonlinear material (which we do not specify
varying e

�0�
2 �, we find a continuous family of nonlinear

localized modes, and a typical example [smoothed by con-
tinuous optimization for Eq. (3)] of such a mode is shown
in Fig. 3. At first glance, this mode can be regarded as
a donor state created by a single defect rod with larger
dielectric constant. However, in the nonlinear case the
mode stability becomes a critical issue. It can be deter-
mined from the so-called Vakhitov-Kolokolov stability cri-
terion extended to 2D discrete NLS models in Ref. [17].
According to this criterion, the nonlinear localized states
with dQ�dv , 0 are stable, and they are unstable other-
wise. Here

Q�v� �
X
n,m

jEn,mj
2 (7)

is the conserved mode power proportional to the energy
of the electric field accumulated in the nonlinear local-
ized mode.

As is well known (see, e.g., Refs. [17]) in the 2D dis-
crete cubic NLS equation, only high-amplitude localized
modes are stable, whereas no stable modes exist in the
continuum limit. For our model, the high-amplitude modes
are also stable (see inset in Fig. 4), but they are not acces-
sible under realistic conditions: To excite such modes one
5476
should increase the refractive index at the mode center by
more than 2 times. Thus, for realistic conditions and rela-
tively small values of x �3�, only low-amplitude localized
modes become a subject of much interest since they can
be excited in experiments. However, such modes in un-
bounded 2D NLS models are always unstable and either
collapse or spread out [16]. Here we reveal that, in sharp
contrast to the 2D discrete NLS models discussed earlier
in various applications, the low-amplitude localized modes
of Eq. (5) can be stabilized due to nonlinear long-range
dispersion inherent to the photonic crystals. It should be
emphasized that such stabilization does not occur in the
models with only linear long-range dispersion [16].

In order to gain better insight into the stabilization
mechanism, we have carried out the studies of Eq. (5)
for the exponentially decaying coupling coefficients Jn,m.
Our results show that the most important factor which
determines the stability of the low-amplitude localized
modes is a ratio of the coefficients at the local nonlinearity
(�J0,0� and the nonlinear dispersion (�J0,1). If the
coupling coefficients Jn,m decrease with the distances
n and m rapidly, the low-amplitude modes of Eq. (5)
with e

�0�
2 � 11.4 are essentially stable for J0,0�J0,1 & 13.

However, this estimation is usually lowered because the
stabilization is favored by the presence of long-range
interactions.
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FIG. 3. Top and 3D views of a nonlinear localized mode in the
2D photonic crystal shown in Fig. 1 (v � 0.442 3 2pc�a).
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FIG. 4. Power Q vs frequency v for the 2D nonlinear local-
ized modes in the photonic crystal of Fig. 1 with two different
e

�0�
2 . Solid lines —stable modes, dashed lines — unstable modes.

Insets show typical profiles of stable modes, and an enlarged part
of the power dependence. Gray areas show the lower and upper
bands of delocalized modes surrounding the band gap.

It should be mentioned that the stabilization of low-
amplitude 2D localized modes is not inherent to all types
of nonlinear photonic crystals. On the contrary, the pho-
tonic crystals must be carefully designed to support stable
low-amplitude nonlinear modes. For example, in the pho-
tonic crystal considered above such modes are stable at
least for 11 , e

�0�
2 , 12, however they become unstable

for e
�0�
2 $ 12 (see Fig. 4). The stability of these modes can

also be controlled by varying r2, r1, or e1. Thus, experi-
mental observation of the nonlinear localized modes would
require not only the use of photonic materials with a rela-
tively large nonlinear refractive index (such as GaAs/AlAs
periodic structures [18] or polymer PBG crystals [19]),
but also a fine adjustment of the parameters of the pho-
tonic crystal. The latter can be achieved, in principle, by
employing the surface coupling technique [20] that is able
to provide coupling to specific points of the dispersion
curve, opening up a very straightforward way to access
nonlinear effects.

In conclusion, we have developed a consistent theory of
nonlinearity-induced self-trapping effects in 2D nonlinear
photonic crystals and predicted the possibility of the en-
ergy localization near the band-gap edge in the form of
stable 2D nonlinear localized modes.
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