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Abstract
We introduce a novel approach to the accurate and efficient calculation of the
optical properties of defect structures embedded in photonic crystals (PCs).
This approach is based on an expansion of the electromagnetic field into
optimally adapted photonic Wannier functions, which leads to effective lattice
models of the PC structures. Calculations for eigenmode frequencies of
simple and complex cavities as well as the dispersion relations for straight
waveguides agree extremely well with the results from numerically exact
supercell calculations. Similarly, calculations of the transmission through
various waveguiding structures agree very well with the results of corresponding
finite-difference time domain simulations. Besides being substantially more
efficient than standard simulation tools, the Wannier function approach offers
considerable insight into the nature of defect modes in PCs. With this
approach, design studies and accurate simulation of optical anisotropic and
non-linear defects as well as detailed investigations of disorder effects in higher-
dimensional PCs become accessible.
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1. Introduction

During the last few years optical fibres have started to replace electrical wires in short-distance
communications such as in local area networks and computer-to-computer links. However,
the realization of a completely seamless, all-optical network, where information processing as
well as communication would take place with laser light rather than electricity, requires novel
optical materials capable of trapping and micro-moulding the flow of light. This is because the
light in an optical fibre easily escapes into the background electromagnetic modes of empty
space if the fibre is bent or distorted on a microscopic scale.

Photonic crystals (PCs) represent a novel class of optical materials which facilitate the
realization of such an integrated photonics. In these periodic dielectric structures, a carefully
engineered combination of microscopic scattering resonances from individual elements of the
periodic array and Bragg scattering from the corresponding lattice leads to the formation of a
photonic band structure. In particular, the flexibility in material composition, lattice periodicity,
symmetry, and topology allows one to tailor the photonic dispersion relations to almost any
application need. The most dramatic modification of the photonic dispersion in these systems
occurs when suitably engineered PCs exhibit frequency ranges over which the propagation
of light is forbidden regardless of direction [1–3]. The existence of these so-called complete
photonic band gaps (PBGs) allows one to eliminate the problem of light leakage from sharply
bent optical fibres. Indeed, using a PC with a complete PBG as a background material and
embedding into this PC a circuit of properly engineered waveguiding channels permits the
creation of an optical micro-circuit inside a perfect optical insulator, i.e. a close analogue of
customary electronic circuits.

These prospects have triggered enormous experimental activities aimed at the fabrication
of two-dimensional (2D) and three-dimensional (3D) PC structures for telecommunication
applications with PBGs in the near-infrared frequency range. Considering that the first Bragg
resonance occurs when the lattice constant equals half the wavelength of light, fabrication
of PCs with band gaps in the near IR requires substantial technological resources. For 2D
PCs, advanced planar microstructuring techniques borrowed from semiconductor technology
can greatly simplify the fabrication process, and high-quality PCs with embedded defects and
waveguides have been fabricated in various material systems such as semiconductors [4–9],
polymers [10, 11], and glasses [12, 13]. In these structures, light experiences PBG effects
in the plane of propagation, while the confinement in the third direction is achieved through
index guiding. This suggests that fabricational imperfections in bulk 2D PCs as well as
deliberately embedded defect structures such as cavities and waveguide bends in 2D PCs
will inevitably lead to radiation losses into the third direction. Therefore, it is still an open
question whether devices with acceptable radiation losses [14] can be designed and realized
in 2D PCs. However, radiation losses can be avoided altogether if light is guided within the
complete PBGs of 3D PCs and, therefore, the past years have seen substantial efforts towards the
manufacturing of suitable 3D PCs. These structures include layer-by-layer structures [15, 16],
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inverse opals [17–19], as well as the fabrication of templates via laser holography [20, 21]
and two-photon polymerization [22–24]. Given this tremendous flexibility in the fabrication
of PCs, it is clear that any experimental exploration, or technological exploitation, of PCs has
to be accompanied by a quantitative theoretical analysis. Detailed numerical simulations of
PC structures allow one to interpret experimental data and help to extract relevant parameters.
Perhaps more importantly, the theoretical design of PC structures allows one to identify the
most interesting cases and to investigate stable designs for successfully operating devices.

To date, theoretical investigations of defect structures in PCs have almost exclusively been
carried out by employing finite-difference time domain (FDTD) discretizations of Maxwell’s
equations [25]. These general-purpose techniques for the simulation of arbitrary dielectric
and metallic structures are well known in the electrical engineering community and have
been perfected over some 30 years. However, the generality of the FDTD approach, while
allowing its application to arbitrary defect structures, at the same time puts severe constraints
on its usefulness for the design of PC circuits. Typical FDTD computations require a
minimum of 10 grid points per wavelength for each spatial dimension, so simulations of
large PC structures lead to formidable requirements on computational resources. Moreover,
the low group velocities near photonic band edges, and for certain waveguiding modes, imply
that corresponding simulation times for PC structures are considerably longer than those in
traditional high-index waveguiding systems.

The computational effort required for solving partial differential equations (PDEs) can be
substantially reduced by employing Galerkin-type methods [26], which rely on an expansion of
the solution into an orthogonal set of basis functions. The efficiency of this approach depends
crucially on the choice of an appropriate basis set. For instance, extended plane waves are
ill-suited to describe localized defect modes in PCs because accurate calculations of simple
defect structures already require several thousands of plane waves. As a consequence, plane-
wave expansions, in the form of supercell calculations, are of practical importance only for
the design of simple cavities and straight waveguides as well as for gauging more advanced
methods. A more natural expansion basis for defect modes in PCs consists in an orthogonal set
of localized functions such as Hermite–Gaussian functions, and the corresponding technique
has been pioneered by Mogilevtsev et al [27]. Despite providing certain improvements over
plane-wave expansions, the localized function method [27] still requires several hundreds
of basis functions for obtaining accurate results and is, therefore, restricted to applications
involving few defects as, for instance, in the design of PC fibres [28, 29].

The heavy numerical load associated with FDTD, finite-element (FE), and standard
Galerkin-type simulations of defect structures in PCs may be directly traced to the fact that
these approaches disregard any information about the underlying PC structure. However, this
information is readily available from standard photonic band-structure computation, which
provides dispersion relations and associated mode structures for infinitely extended, perfectly
periodic PCs. In particular, the eigenmodes of a given PC, the Bloch functions, constitute a
natural and complete basis set of functions that have encoded into them all the information
of the corresponding PC. The extended nature of Bloch functions, however, makes them less
suited for the expansion of localized defect modes.

Therefore, a number of authors have recently set out to adapt the tight-binding
approximation [30] of electronic structure theory to PCs [31–33]. In such an approach, the
Bloch functions are expanded into a set of ‘atomic orbitals’ and the expansion parameters
are determined by fitting the resulting band structure to ab initio calculations. Once these
approximate Bloch functions have been obtained, a localized basis set can be generated
by means of a lattice Fourier transform. However, the success of empirical tight-binding
parametrizations depends crucially on the existence of appropriate localized ‘orbitals’ of the



R1236 Topical Review

individual ‘atoms’ that make up the crystal [34, 35]. As a consequence, the adaptation to PCs
presents major problems because bound states for a single dielectric scatterer simply do not
exist and until now no tight-binding parametrization for TE-polarized radiation in 2D PCs
or electromagnetic waves in 3D PCs has been obtained. This has led a number of authors
to base a tight-binding approximation on an expansion into modes associated with a single
cavity defect [36–39]. While this is a perfectly legitimate approximation, its application is
limited in the sense that it requires the existence of a complete PBG in the underlying PC to
obtain localized expansion functions via supercell calculations. Furthermore, there does not
appear to be a straightforward way to systematically improve upon the initial approximation
by incorporating additional, higher-order cavity modes as, in most instances, the latter do not
exist. Nevertheless, this approach provides a physically intuitive picture of wave propagation
through defect structures in PCs.

An alternative route to the construction of approximate lattice models starts from the
Lippmann–Schwinger equation for electromagnetic radiation in PCs and utilizes an expansion
of the electromagnetic field into localized functions centred at PC lattice sites [40, 41]. Within
this approach, knowledge of the underlying PC is contained in the Green function of the perfect
lattice which may be calculated from the photonic Bloch functions. A careful analysis of the
decay properties of the Green function with increasing separation of its two spatial arguments
reveals that the construction of lattice models for PCs requires one to go beyond nearest-
neighbour interaction [41–43, 53], which may lead to novel phenomena such as stable solitonic
excitations in non-linear 2D PCs [42, 43]. However, to date, only monopole-type defect modes
can be considered in this approximation and the inclusion of higher-ordermultipole-type defect
modes is not straightforward.

In this review, we introduce a novel approach to the calculation of the optical properties
of defect structures embedded in PCs. This approach is based on an expansion of the
electromagnetic field into optimally adapted photonic Wannier functions which are calculated
directly from the Bloch functions without going through a tight-binding parametrization.
As a consequence, we obtain a lattice model with more than nearest-neighbour interaction
whose accuracy can be systematically improved by adding additional Wannier functions for
higher bands. The Wannier function approach was developed in the context of electronic
problems in 1937 [44], and has proven its usefulness as a starting point for various formal
developments such as the semiclassical theory of electron dynamics and the theory of magnetic
interactions in solids. In 1993 Leung [45] suggested that the Wannier function approach should
be very efficient in investigating the properties of PCs. Since then, the formal existence of
an orthonormal basis of localized Wannier functions has been used [31–33, 36–39] to justify
the tight-binding approximation which we discussed above. However, until now the practical
importance of the Wannier function approach has been fairly minimal because of the difficulties
involved in calculating well-localized Wannier functions.

The situation changed dramatically after the publication by Marzari and Vanderbilt of a
new method for calculating maximally localized generalized Wannier functions in crystalline
solids [46]. Quite recently this method has been extended to the case of 2D PCs [47–49] and
the efficiency of using the photonic Wannier functions for calculations of simple defect cavities
has been demonstrated [47, 48]. Here, we systematically describe how the maximally localized
photonic Wannier functions can be calculated, and demonstrate how they can be efficiently
used for various applications, such as determining the transmission properties of PC circuits.
In particular, we point out that the computational efficiency of the Wannier function approach
is comparable (and even exceeds) the efficiency of multiple-multipole methods, based on using
such specialized functions as cylindrical [50, 51] or vector spherical [52] harmonics, which
are currently believed to be the most efficient methods for calculations for PC structures made
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of ideally spherical or cylindrical scatterers (see the discussion at the end of section 4.3).
Besides this, in contrast to the multiple-multipole methods, the Wannier function approach
can be applied to PCs with arbitrary shapes of individual scatterers.

The review is organized as follows. In section 2, we review photonic band-structure
computation, which lies at the heart of our Wannier function approach. The calculation of
optimally localized Wannier functions from photonic Bloch functions is discussed in section 3.
These Wannier functions facilitate the construction of lattice models for PCs as discussed in
section 4. Based on this, the accuracy and efficiency of the Wannier function approach is
demonstrated through detailed calculations of cavity modes in section 4.1. Further illustrations
include the determination of waveguide dispersion relations in section 4.2 and calculations of
the transmission through bends in section 4.3. Finally, in section 5, we show how large-scale
PC circuits can be simulated efficiently through combining a recently developed scattering
matrix approach [54] with Wannier function simulations.

2. Photonic band-structure calculations

Virtually any theoretical investigation of PC defect structures starts with the computation of the
photonic band structure associated with the infinitely extended, perfectly periodic underlying
PCs. These computations permit the determination of dispersion relations and associated mode
structures of perfect PCs. This allows us to identify PBGs and the symmetry properties of the
modes. Other physical quantities of interest, such as the density of states, the local density of
states [55], and the group velocity [56, 57], can be directly obtained from these calculations.
In the present review, we restrict ourselves to the case of TM-polarized radiation propagating
in 2D PCs, and in the following we discuss photonic band-structure computation for this case
only. However, we would like to emphasize that the Wannier function approach can easily be
extended to the description of TE-polarized radiation in 2D PCs as well as to the propagation
of electromagnetic waves in 3D PCs.

The TM-polarized radiation that propagates in the (x, y) plane of a perfect 2D PC is most
conveniently described through the z-component of the electric field, E(�r, t), which obeys the
wave equation

[
∇2 +

(
ω

c

)2

εp(�r)

]
E(�r) = 0. (1)

Here, we have assumed a time harmonic dependence, E(�r, t) = exp(−iωt)E(�r), of the electric
field with the frequency, ω. In addition, c and �r = (x, y) denote the vacuum speed of light and
the in-plane position vector respectively, and ∇2 = (∂2

x + ∂2
y) represents the 2D Laplacian. All

the structural information of the PC is encoded into the dielectric constant, εp(�r) ≡ εp(�r + �R),
which is periodic with respect to the set R = {n1�a1 + n2�a2; (n1, n2) ∈ Z2} of lattice vectors �R
that are generated by the primitive translations �a1 and �a2.

Since equation (1) is a PDE with periodic coefficients, its solutions obey the Bloch–Floquet
theorem. This allows one to label the solutions with a wavevector �k, the so-called crystal
momentum. Furthermore, restricting the wavevector, �k, to lying within the first Brillouin zone
(BZ) [30], we introduce an integer index n, the so-called band index, labelling the solutions
for a given wavevector, �k. Such solutions are commonly referred to as the Bloch functions,
En�k(�r), of the underlying PC. They satisfy the Bloch–Floquet theorem

En�k(�r + �R) = ei�k· �R En�k(�r), (2)
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Figure 1. Photonic band structure for TM-polarized radiation in a square lattice (lattice constant
a) of cylindrical dielectric rods (radius rrod = 0.18a and εrod = 11.56) in air. This PC exhibits
a large fundamental gap extending from ω = 0.302 × 2πc/a to 0.443 × 2πc/a. A higher-order
band gap extends from ω = 0.738 × 2πc/a to 0.763 × 2πc/a.

and represent a complete orthogonal set of functions:

∫
R2

d2�r E∗
n�k(�r)εp(�r)E∗

n′ �k′ (�r) = δnn′δ(�k − �k ′), (3)

where the integration runs over the entire space R
2. The eigenfrequencies, ωn�k , belonging to

the Bloch functions, En�k(�r), acquire the same composite label and may be represented in a
band diagram.

A straightforward way of solving equation (1) is to expand all the periodic functions,
exp(−i�k · �r)En�k(�r) and εp(�r), into a Fourier series over the reciprocal lattice G, thereby
transforming the differential equation into an infinite-matrix eigenvalue problem, which may
be suitably truncated and solved numerically. Details of this plane-wave method (PWM) for
isotropic systems can be found, for instance, in [55, 58] and for anisotropic systems in [59].

While the PWM provides a straightforward approach to computing the band structure of
PCs, it also exhibits a number of shortcomings, such as slow convergence associated with
the truncation of Fourier series in the presence of discontinuous changes in the dielectric
constant. Therefore, we have recently developed an efficient real-space approach to computing
photonic band structures [57]. Within this approach, the wave equation (1) is discretized
in real space through finite differences or more advanced FE techniques leading to sparse
matrix problems. The solutions of the resulting algebraic problems are obtained by employing
multi-grid methods, which guarantee an efficient solution by taking full advantage of the
smoothness of the photonic Bloch functions. In figure 1, we show the band structure for TM-
polarized radiation in a 2D PC consisting of a square lattice (lattice constant a) of cylindrical
dielectric rods (radius rrod = 0.18a and dielectric constant εrod = 11.56) in air. This structure
exhibits two complete band gaps. The larger, fundamental band gap (38%) extends between
ω = 0.302 × 2πc/a to 0.443 × 2πc/a and the smaller, higher-order band gap (3%) extends
from ω = 0.738 × 2πc/a to 0.763 × 2πc/a. In the subsequent sections, we will use this
particular PC in order to illustrate the Wannier function approach for the accurate and efficient
calculation of localized defect modes generated by simple and complex cavities, of dispersion
relations for straight waveguides, and of transmission properties of PC bends.
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Figure 2. The photonic Wannier functions, Wn�0(�r), for the first four bands obtained by direct
numerical integration of equation (4). The parameters of the underlying PC are the same as those
in figure 1.

3. Maximally localized photonic Wannier functions

As discussed in the introduction, a natural description of localized defect modes associated
with defect structures embedded in PCs consists of an expansion of the electromagnetic fields
into an orthogonal set of localized basis functions. However, in order to obtain more physical
insight into the optical properties of such defect structures, and to increase the efficiency and
accuracy of the computations, it is highly desirable to encode all the relevant information such
as the lattice symmetry and photonic band structure of the underlying PC, into these basis
functions. Therefore, the most natural basis functions for the description of defect structures
in PCs are the so-called photonic Wannier functions, Wn �R(�r), which are formally defined
through a lattice Fourier transform

Wn �R(�r) = VWSC

(2π)2

∫
BZ

d2�k e−i�k· �R En�k(�r) (4)

of the extended Bloch functions, En�k(�r). Here, VWSC denotes the volume of the Wigner–Seitz
cell (WSC). The above definition associates the photonic Wannier function Wn �R(�r) with the
frequency range covered by band n, and centres it around the corresponding lattice site �R. In
addition, the completeness and orthogonality of the Bloch functions translates directly into
corresponding properties of the photonic Wannier functions∫

R2

d2�r W ∗
n �R(�r)εp(�r)Wn′ �R′(�r) = δnn′δ �R �R′ . (5)

Computing the Wannier functions directly from the output of photonic band-structure
programs via equation (4) leads to functions with poor localization properties and erratic
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behaviour (see figure 2). These problems originate from an indeterminacy of the Bloch
functions. It is straightforward to show that for a group of NW bands there exists for every
wavevector �k a free unitary transformation Umn(�k) between the bands

En�k(�r) →
NW∑

m=1

Umn(�k)Em�k(�r), (6)

which leaves the orthogonality relation (5) unchanged. Fixing the random part of the phases
of the individual Bloch functions by requiring them to be real-valued at the origin of the
WSC constitutes a simple choice of the unitary transformation Umn(�k) and removes the erratic
behaviour of the Wannier functions to a large extent. However, while being quite efficient
for energetically isolated bands, this procedure fails to generate well-localized functions for
energetically entangled bands. A solution to this unfortunate situation is provided by recent
advances in electronic band-structure theory. Marzari and Vanderbilt [46, 60] have outlined an
efficient scheme for the computation of maximally localized Wannier functions by determining
numerically a transformation Umn(�k) that minimizes an appropriate spread functional. In view
of the translational properties of the Wannier functions,

Wn �R(�r) = Wn�0(�r − �R), (7)

this functional reads

� =
NW∑
n=1

[〈n�0|r2|n�0〉 − (〈n�0|�r |n�0)2] = min. (8)

Here we have introduced a shorthand notation for matrix elements according to

〈n �R| f (�r)|n′ �R′〉 =
∫

R2

d2�r W ∗
n �R(�r) f (�r)εp(�r)Wn′ �R′(�r), (9)

for any function f (�r). It should be emphasized that since the unitary transformation (6) mixes
the bands, the index n of the Wannier functions can no longer be referred to as a band index, and
should be considered just as a numbering index. Nevertheless, in what follows we shall refer
to it as to the band index implying the generalized bands [61] obtained from equation (6). In
addition, we note that for an inversion-symmetric PC, εp(�r) ≡ εp(−�r), the Wannier functions
can be chosen to be real [46].

The field distributions of the optimized Wannier functions belonging to the first six bands
of our model system are depicted in figure 3. Their localization properties as well as the
symmetries of the underlying PC structure are clearly visible. It should be noted that, in
contrast to the case for the other bands, the Wannier centre of the second band is located halfway
between the cylinders (see [46, 60] for more details on the Wannier centres). This location of the
Wannier centre is a result of minimizing the spread functional, equation (8), and dramatically
improves the localization properties of the second band Wannier function as compared to
the case where the Wannier function centre would coincide with a cylinder site [47, 48].
Nevertheless, the orthogonality relation of the Wannier functions, equation (5), remains valid
in this case. The localization properties of this set of optimized Wannier functions suggest
that restricting empirical tight-binding parametrizations [31–33] or other lattice models [40] of
PCs to nearest-neighbour interaction only will most likely be insufficient. More specifically,
the spatial extent of the Wannier functions belonging to the first four bands of our model
system (figure 3) indicate that there is small but non-negligible overlap between the Wannier
functions centred on second-nearest neighbours, such that even the description of defect modes
with monopole or dipole symmetry within these models might not be completely accurate using
a nearest-neighbour interaction approximation. Moreover, the Wannier functions for the fifth
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Figure 3. Photonic Wannier functions, Wn�0(�r), for the first six bands obtained by minimizing the
corresponding spread functional, equation (8). Note that in contrast to the case for the other bands,
the Wannier centre of the second band is located halfway between the cylinders. The parameters
of the underlying PC are the same as those in figure 1.

and higher bands extend well into the unit cells adjacent to the central cell. In fact, the Wannier
functions belonging to the fifth and sixth bands of our model system are predominantly localized
on nearest-neighbour lattice sites and, therefore, suggest a total failure of a nearest-neighbour
interaction approximation in describing localized defect modes of quadrupole symmetry.

It should be pointed out that instead of working with the electric field [47, 48],
equations (1)–(5), one may equally well construct photonic Wannier functions for the magnetic
field, as recently demonstrated by Whittaker and Croucher [49]. The only difference in this
approach is that the weighting function εp(�r) enters neither the orthogonality relations (3)
and (5), nor the construction of matrix elements according to equation (9).

4. Defect structures in photonic crystals

Light paths for frequencies inside a PBG can be created by deliberately embedding defects
into a PC. For instance, if a single rod is modified or left out altogether, an optical microcavity
is formed and leads to a localized mode of light inside the PBG. A chain of such point defects
can act as a linear waveguide channel and facilitate the construction of very sharp waveguide
bends [62]. Combinations of these basic elements can provide ultrasmall beam splitters,Mach–
Zehnder interferometers, and functional micro-optical elements such as wavelength add–drop
filters. Properly designed, a set of such functional elements may allow one to realize a PC
circuitry capable of guiding electromagnetic radiation in a way similar to the guidance of
electrons in electronic micro-circuits. In this section, we want to illustrate—to the best of our
knowledge for the first time—the usage and efficiency of the Wannier function approach in
describing PC circuits by presenting within our underlying model PC a systematic study of
the basic functional elements alluded to above.
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The description of defect structures embedded in PCs starts with the corresponding wave
equation in the frequency domain

∇2 E(�r) +

(
ω

c

)2

{εp(�r) + δε(�r)}E(�r) = 0. (10)

Here, we have decomposed the dielectric function into the periodic part, εp(�r), and the
contribution, δε(�r), that describes the defect structures. Within the Wannier function approach,
we expand the electromagnetic field according to

E(�r) =
∑
n, �R

En �RWn �R(�r), (11)

with unknown amplitudes En �R . Inserting this expansion into the wave equation (10) leads to
the basic equation for lattice models of defect structures embedded in PCs:∑

n′, �R′
{δnn′δ �R �R′ + Dnn′

�R �R′ }En′ �R′ =
(

c

ω

)2 ∑
n′, �R′

Ann′
�R �R′ En′ �R′ . (12)

The matrix Ann′
�R �R′ depends only on the dispersion relation and Wannier functions of the

underlying PC and is defined through

Ann′
�R �R′ = VWSC

(2π)2

∫
BZ

d2�k ei�k·( �R− �R′)
∑

m

U †
nm(�k)

(
ωm�k

c

)2

Umn′(�k). (13)

Due to the smoothness of the photonic dispersion relation ωn�k with respect to the wavevector
�k, the exponential factor in equation (13) leads to a very rapid decay of the magnitude of
matrix elements with increasing separation | �R − �R′| between lattice sites, effectively making
the matrix Ann′

�R �R′ sparse. Furthermore, it may be shown that the matrix Ann′
�R �R′ is symmetric and

positive definite. Similarly, once the Wannier functions of the underlying PC are determined,
the matrix Dnn′

�R �R′ depends solely on the overlap of these functions, mediated by the defect
structure:

Dnn′
�R �R′ =

∫
R2

d2�r W ∗
n �R(�r) δε(�r) Wn′ �R′(�r). (14)

As a consequence of the localization properties of both the Wannier functions and the defect
dielectric function, the Hermitian matrix Dnn′

�R �R′ , too, is sparse. Moreover, in the case of

inversion-symmetric PCs, both matrices, Ann′
�R �R′ and Dnn′

�R �R′ , are real and symmetric.
Depending on the nature of the defect structure, we are interested in (i) frequencies of

localized cavity modes, (ii) dispersion relations for straight waveguides, or (iii) transmission
and reflection through waveguide bends and other, more complex defect structures. In the
following, we consider each of these cases separately.

4.1. Localized cavity modes

As a first illustration of the Wannier function approach, we consider the case of a simple cavity
created by changing the dielectric constant εdef of a single dielectric rod at the defect site �Rdef

of the model PC, as shown in the inset of figure 4:

δε(�r) = (εdef − εrod)�(�r − �Rdef), (15)

where �(�r) defines the area of the defect rod. Specifically, �(�r) = 1 inside a defect rod at
�Rdef = 0 and �(�r) = 0 outside. In this case, we directly solve equation (12) as a generalized

eigenvalue problem for the cavity frequencies that lie within the PBG, and reconstruct the
cavity modes from the corresponding eigenvectors.
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In figure 4 we compare the frequencies of these cavity modes calculated from
equation (12) with corresponding calculations using PWM-based supercell calculations [58].
Upon decreasing εdef relative to its perfect-lattice value, a non-degenerate acceptor-like cavity
mode with monopole symmetry emerges from the bottom edge of the band gap. Conversely,
upon increasing εdef , doubly degenerate donor-like cavity modes of dipole symmetry emerge
from the upper edge of the band gap. The results of the Wannier function approach using
the NW = 6 energetically lowest-lying Wannier functions per unit cell in equation (12)
are in complete agreement with numerically exact results of the supercell calculations. In
figure 5, we depict the corresponding mode structures for a monopole cavity mode (εdef = 1.0,
ω = 0.388 × 2πc/a, panel (a)), and for a doubly degenerate dipole cavity mode (εdef = 30.0,
ω = 0.376 ×2πc/a, panels (b) and (c)). The symmetry properties of the cavity modes clearly
correlate with the symmetry of the underlying Wannier functions. This suggests that the
convergence properties of the Wannier function approach depend on the nature and symmetry
properties of the cavity modes under consideration. To discuss this issue in greater detail, it is
helpful to define a measure Vn of the strength of the contributions to a cavity mode from the
individual Wannier function associated with band n via

Vn =
∑

�R
|En �R|2. (16)

In figure 6, we display the dependence of the parameter Vn on the band index n for the
cavity modes shown in figure 5. As expected from their respective symmetries, the dominant
contributions to these cavity modes come from the Wannier functions of like symmetry.
Nevertheless, the monopole cavity mode exhibits a certain (equal) contribution from the third-
and fourth-band Wannier functions which exhibit dipole symmetry. Similarly, the Wannier
function of the first band with monopole symmetry contributes exactly the same amount to
the degenerate dipole cavity modes, whose degeneracy is further manifest in the symmetry
of the contributions from the third- and fourth-band Wannier functions. Both monopole and
dipole cavity modes can be completely described using the Wannier functions belonging to
the six lowest bands. Therefore, we see that the frequencies of these cavity modes are already
fully converged when working with only six Wannier functions per unit cell (for a comparison
with numerically exact supercell calculations, see figure 4). We confirmed this result by
systematically incorporating up to 20 Wannier functions. However, this situation might be
quite different for other types of cavity mode. For instance, an analysis of the Vn-parameter
shows that an accurate description of quadrupole cavity modes which occur for very large values
of the defect dielectric constant, εdef ≈ 100.0, should incorporate the Wannier functions of
bands 5 and 10. Similarly, accurate results for dipole cavity modes created by increasing the
radius of the defect rod requires the incorporation of the Wannier functions associated with
bands 8–10 and 13–17.

Another important issue within the Wannier function approach is the question of how many
lattice sites should be retained in a numerical implementation of the expansion (11). In figure 7
we display the contributions En �R from individual lattice sites �R to the monopole cavity mode
(see figure 5(a)) for the first four bands. These contributions decay very rapidly with increasing
distance d = | �R − �Rdef | of the lattice site �R from the defect site �Rdef . In particular, once this
separation exceeds three lattice constants, i.e., d > 3a, the corresponding contributions are
negligibly small. We have confirmed this result by systematically incorporating all lattice
sites up to a separation of seven lattice constants. Similar results hold for other cavity modes
of dipole and quadrupole symmetry. This (i) suggests that the Wannier function approach
leads generically to computational tasks which involve only sparse matrices and (ii) further
highlights the inadequacy of the nearest-neighbour interaction approximation.
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Figure 4. Frequencies of localized cavity modes associated with a single defect rod with dielectric
constantεdef (see the inset). The results of the Wannier function approach (diamonds) using NW = 6
Wannier functions per unit cell in equation (12) are in complete agreement with numerically exact
results of the supercell calculations (full curves). The parameters of the underlying PC are the same
as those in figure 1. See also figure 5 for the mode structure of these modes.
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Figure 5. Localized cavity modes associated with a single defect rod: (a) removing one rod,
εdef = 1.0, leads to the formation of a non-degenerate monopole cavity mode (ω = 0.388×2πc/a),
whereas ((b), (c)) increasing the dielectric constant of the defect rod, εdef = 30.0, leads to the
formation of a doubly degenerate dipole cavity mode (ω = 0.376 × 2πc/a). These results are
calculated from equation (12) with NW = 6 Wannier functions per unit cell. The parameters of the
underlying PC are the same as those in figure 1.

The efficiency of the Wannier function approach is particularly evident when considering
defect clusters consisting of several defect rods. Since the creation of defects with prescribed
dielectric constants represents a major challenge for material synthesis, such defect clusters
offer an alternative route to creating cavity modes with prescribed frequencies and symmetries.
As an illustration, we consider a system of four defects whose defect dielectric function, δε(�r),
can be written as sum over certain lattice sites:

δε(�r) =
∑

m

(εm − εrod)�(�r − �Rm), (17)

where �Rm and εm denote the position and the dielectric constant of the mth defect, respectively.
In this case equation (14) reduces to a sum,

Dnn′
�R �R′ =

∑
m

(εm − εrod)Bnn′
�R− �Rm , �R′− �Rm

, (18)
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Figure 6. The strength Vn of the individual contributions from the Wannier functions of the
lowest seven bands (index n) to the formation of the cavity modes depicted in figure 5. The
parameters of the underlying PC are the same as those in figure 1.
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Figure 7. Contributions En �R from individual lattice sites �R to the monopole cavity mode displayed
in figure 5(a) for the first four bands (n = 1, 2, 3, 4). The parameters of the underlying PC are the
same as those in figure 1.

over the matrix elements

Bnn′
�R �R′ =

∫
R2

d2�r W ∗
n �R(�r)�(�r)Wn′ �R′(�r), (19)

for a single defect rod situated at the point �R = 0. As a consequence, equation (12) takes on
the form∑
n′, �R′

{
δnn′δ �R �R′ +

∑
m

(εm − εrod)Bnn′
�R− �Rm , �R′− �Rm

}
En′ �R′ =

(
c

ω

)2 ∑
n′, �R′

Ann′
�R �R′ En′ �R′ . (20)

In figure 8, we display the frequencies of the localized modes generated by a defect cluster
consisting of four defect rods with identical dielectric constants, εm ≡ εdef, m = 1, 2, 3, 4,
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Figure 8. Frequencies of localized cavity modes for a cluster consisting of four identical defect
rods with dielectric constant εdef . The positions of the defect rods are shown as black circles in
the inset. The results of the Wannier function approach (NW = 6, diamonds) are in complete
agreement with supercell calculations for the double degenerate dipole cavity mode (solid curve),
the second-order monopole cavity mode (dashed curve), and the quadrupole cavity mode (dotted
curve). The parameters of the underlying PC are the same as those in figure 1.

as functions of εdef . The positions of the defect rods are shown as black circles in the
inset of figure 8. Similarly to the case of a single defect rod, the results of the Wannier
function calculations are in complete agreement with plane-wave-based supercell calculations.
However, we would like to emphasize that the Wannier function calculations require only
little more numerical effort as compared to the calculations for a single rod. In fact, the
Wannier function calculations scale linearly with the number of sites considered. More
important, however, is the fact that owing to the translational properties (7) of the Wannier
functions, the computation of the present defect cluster requires only the computation of
matrix elements (19) for a single defect rod, which are subsequently assembled according to
equation (18). Therefore, for a given underlying PC structure, it becomes possible to build up
a database of matrix elements, equation (19), for different geometries of defect rods, which
would allow highly efficient defect computations through simple matrix assembly procedures.
This is in stark contrast to any other computational technique known to us.

4.2. Dispersion relations of waveguides

Arguably the most important types of defect clusters in PCs are one or several adjacent straight
rows of defects. Properly designed, such defect rows form a PC waveguide which allows the
efficient guiding of light for frequencies within a PBG [62, 63]. Due to the one-dimensional
periodicity of such a waveguide, its guided modes obey the 1D Bloch–Floquet theorem

E(�r + �sw) = ei�k(ω)·�sw E(�r) (21)

and thus they can be labelled by a wavevector, �k(ω), parallel to the waveguide director,
�sw = w1�a1 + w2�a2, where �a1 = (a, 0) and �a2 = (0, a) are the primitive lattice vectors of
the PC, and integers w1 and w2 define the direction of the waveguide (for instance, an x-axis-
directed W1 waveguide is described through w1 = 1 and w2 = 0). Commonly, investigations
of PC waveguides consist of calculations of the dispersion relations, �k(ω), of all the guided
modes. In this section we show how they can be calculated with the Wannier function approach.
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As an illustration, we consider an infinite W1 waveguide consisting of a single row of
identical defect rods with dielectric constant εdef :

δε(�r) =
∞∑

m=−∞
(εdef − εrod)�(�r − �Rm), (22)

where the positions �Rm = �R0 + m�sw of the defect rods are described through the waveguide
director, �sw, and the origin of the waveguide, �R0. Waveguides with several adjacent defect
rows (correspondingly called W2, W3 waveguides, etc) may be defined in a similar fashion.
It is convenient now to rewrite equation (20) as∑

n′ �R′
Mnn′

�R �R′(ω)En′ �R′ = 0 ∀n and �R, (23)

where the coefficients

Mnn′
�R �R′ = δnn′δ �R �R′ + (εdef − εrod)

∞∑
m=−∞

Bnn′
�R− �Rm , �R′− �Rm

−
(

c

ω

)2

Ann′
�R �R′ (24)

exhibit periodicity along the waveguide axis:

Mnn′
�R−�sw, �R′−�sw

= Mnn′
�R �R′ ∀ �R and �R′. (25)

To calculate the waveguide dispersion relation we combine equation (23) with the Bloch–
Floquet theorem for the waveguide modes, equation (21). This is facilitated by partitioning
the expansion coefficients En �R into identical slices perpendicular to the waveguide that contain
exactly one structural unit of the waveguide. This partitioning is analogous to the definition of a
supercell and is illustrated in figure 9 for a W1 waveguide along the x-axis. As a consequence,
this partitioning induces vectors �Ei = {En, �ρi } that consist of the amplitudes of all Wannier
functions (n = 1, 2, . . . , NW) that are centred around lattice sites �ρi contained in slice i whose
structural unit is located at site �Ri = �R0 + i�sw. A corresponding partitioning of the matrix
Mnn′

�R �R′ in equation (24) leads to the introduction of submatrices M̂i, j ≡ M̂i− j that describe the

coupling of different slices. In a numerical implementation, these infinite submatrices M̂i, j

are truncated by taking into account only a finite number of bands, NW, and a finite number of
lattice sites, NR, surrounding defect rods inside each slice, for which the coupling of Wannier
functions is relevant. Then, the matrices M̂i, j acquire the dimension (NR NW) × (NR NW).
Assuming that the coupling between slices separated by the distance exceeding La can be
neglected, i.e., M̂i− j ≡ 0 for | �Ri − �R j | � La, we finally arrive at (instead of equation (23))
the matrix equation

i+L∑
j=i−L

M̂i− j �E j = 0, (26)

which can be rewritten, generalizing the approach of [41, 53], in a transfer matrix form by
defining the composite vectors �Fi = { �Ei , �Ei+1, . . . , �Ei+2L−1}. As a result, we obtain

�Fi−1 = T̂ (ω) �Fi , (27)

where the transfer matrix T̂ (ω) = {T̂i, j (ω)} has non-zero submatrix entries only for

T̂1, j (ω) = −M̂−1
L (ω)M̂L− j (ω) for j = 1, 2, . . . , 2L,

T̂ j+1, j = 1 for j = 1, 2, . . . , 2L − 1.
(28)

Combining equation (27) with the Bloch–Floquet theorem (21) allows us to identify the
waveguide dispersion relations as the set of transfer matrix eigenvalues

T̂ (ω) �	(p)(ω) = exp{ikp(ω)sw} �	(p)(ω). (29)
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Figure 9. A PC with embedded waveguide structure can be partitioned into identical computational
slices (supercells) that contain exactly one structural unit of the waveguide. This partitioning
facilitates the definition of a transfer matrix, equation (27), on the basis of equation (23). In
addition, we indicate the number, NR, of lattice sites inside one slice and the number, L , of
interacting slices which are taken into account in the electric field expansion.

Here, �	(p)(ω), p = 1, . . . , 2NR NW L represents the particular guided mode associated with
the wavevector kp(ω). By construction, the real part of all such wavevectors may be restricted
to lying within the reduced BZ defined through |Re[kp]| � π/sw. In figure 10(a) we plot as an
example the wavevectors kp(ω) at ω = 0.42 × 2πc/a for the guided modes of a single-mode
PC waveguide created by removing a row of rods. In addition to the propagating guided modes
with real wavevectors kp(ω), any waveguide supports a multitude of evanescent guided modes
with complex wavevectors kp(ω) which decay or grow slowly (with Im[kp] 
 ±a−1) along
the waveguide. Their significance will be discussed in sections 4.3 and 5.

To date, investigations of straight PC waveguides have concentrated on the calculation of
dispersion relations for propagating guided modes only. Such calculations can be accurately
carried out by employing the supercell technique. In figures 10(b) and 11 we display
the dispersion relations for propagating guided modes for a number of different waveguide
types calculated within the Wannier function approach, equation (29). The results of these
calculations, using NR = 7, L = 5, and the six energetically lowest-lying Wannier functions,
are fully converged and in complete agreement with the results of plane-wave-based supercell
computations. Similar to the calculations of complex cavity structures, the calculations within
the Wannier function approach require fairly minimal computational resources in comparison
with the supercell technique. In contrast to the recently developed effective discrete equation
approach [41, 53], the Wannier function approach remains accurate even in the vicinity of
band edges for the waveguides formed by chains of monopole cavity modes (see figures 10(b)
and 11(a)). Similarly, the Wannier function approach can be used for investigations of PC
waveguides formed by chains of doubly degenerate dipole cavity modes (see figure 11(b)) and
other higher-order cavity modes.

We would like to emphasize that, in contrast to the supercell technique, the Wannier
function approach, equation (29), enables us to also obtain the dispersion relations for
evanescent guided modes (see figure 10(a)). Clearly, these modes are largely irrelevant in
perfectly periodic straight waveguides. However, they do play an important role as soon
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Figure 10. (a) Complex wavevectors kp(ω) at ω = 0.42 × 2πc/a for the guided modes of a
PC waveguide consisting of a missing row of rods in the underlying PC, calculated within the
Wannier function approach, equation (29), using NR = 7, L = 5, and the NW = 6 energetically
lowest-lying Wannier functions. Notice the existence of two propagating guided modes (triangles
pointing up) with real kp(ω) and a multitude of slowly decaying and growing evanescent guided
modes (diamonds) with complex kp(ω). The totality of these modes facilitates the complete
characterization of the waveguide through a scattering matrix as discussed in sections 4.3 and 5.
(b) The dispersion relation of the propagating guided mode with kp(ω) > 0 for the same PC
waveguide. This W1 waveguide may be regarded as a chain of monopole cavity modes (see
figure 5(a)) leading to a single waveguide mode with even symmetry. The calculations within the
Wannier function approach (diamonds) are in complete agreement with the results of supercell
calculations (solid curve). The grey areas represent the projected band structure of the underlying
PC whose parameters are the same as those in figure 1.
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Figure 11. Dispersion relations of the propagating guided modes for PC waveguides consisting:
(a) of two missing rows of rods in the underlying PC—this W2 waveguide may be regarded as
two coupled chains of monopole cavity modes (see figure 5(a)) leading to two waveguide mode
branches with even and odd symmetry; (b) of a row of identical rods whose dielectric constants
εdef = 30.0 have been modified from the εrod = 11.56 of the underlying PC—this W1 waveguide
may be regarded as a chain of doubly degenerate dipole cavity modes (see figures 5(b), (c)) leading
to two waveguide mode branches with even and odd symmetry. The calculations within the Wannier
function approach, equation (29), using NR = 7, L = 5, and the NW = 6 energetically lowest-lying
Wannier functions (diamonds), are in complete agreement with the results of supercell calculations
(solid curves). The grey areas represent the projected band structure of the underlying PC whose
parameters are the same as those in figure 1. The dots (black circles) in the insets indicate the
lattice sites of the missing (modified) rods.

as the perfect periodicity of the waveguide is broken either through imperfections due to
fabricational tolerances, or through the deliberate creation of deviations from periodicity such
as bends or coupled cavity-waveguide systems for wavelength-division multiplexing (WDM)
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Figure 12. A defect structure (filled circles) embedded into a PC (open circles) representing a
two-port device which consists of the actual device, indicated by the central polygon, with attached
waveguiding leads. The leads, too, may be regarded as two-port devices as indicated by the
corresponding rectangles. The central polygon and the rectangles delineate all lattice sites which
are taken into account within the Wannier function approach using NR = 5 and L = 2 (see figure 9
for the details). The Wannier function approach facilitates the complete characterization of these
devices through the calculation of appropriate scattering matrices of individual PC devices, Sw1,
Sw2, and Sdev, enabling a PC circuit theory based on cascaded scattering matrices as discussed in
section 5.

applications. In such cases, these evanescent guided modes give rise to light localization effects
and determine the non-trivial transmission and reflection properties of PC circuits [41, 53] as
we will discuss below.

4.3. Light propagation through photonic crystal circuits

As alluded to earlier, PCs with embedded defects, such as microcavities and waveguiding
structures, hold tremendous potential for the creation of photonic integrated circuits. Recent
experimental attempts to fabricate the simplest types of PC-based optical circuit are, indeed,
very promising [64]. Until now, the transmission properties of PC circuits were mostly studied
using various implementations of the FDTD methodology. While this is a perfectly legitimate
approach, which rests on some 30 years of experience, this technique does require substantial
computational resources and, as a consequence, modelling has been restricted to selected
small-scale PC circuits. Moreover, certain computationally intensive aspects related to small-
scale PC circuits such as studies of the effect of fabricational tolerances and the optimization
of device designs still present serious challenges when working with FDTD methods. In
the following, we will demonstrate that the Wannier function approach provides an efficient
simulation tool for the description of light propagation through PC circuits which allows one
to overcome most of these limitations.

As an illustration, we consider light propagation through two-port PC circuits such as
waveguide bends or coupled cavity-waveguide systems. The common feature of these devices
is that two semi-infinite straight PC waveguides act as leads that are connected through a
finite-sized region of defects. In figure 12, we have illustrated this principle for a double bend
connecting PC waveguides of two different types. In this case, light propagation through the
device at frequency ω is governed by equation (23), which should be truncated (to obtain equal
number of equations and unknowns) by prescribing certain values to the expansion coefficients,
En �R , at some sites inside the waveguiding leads. Since these values determine the amplitudes
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of the incoming light, it is physically more transparent to express the expansion coefficients
En �R within the leads through a superposition of the guided modes �	(p)(ω) with wavevectors
kp(ω) of the corresponding infinite straight waveguide. In a numerical implementation this
is facilitated by replacing the expansion coefficients En �R for all lattice sites �R inside each
waveguiding lead, Wi , i = 1, 2, according to

�Fwi ≡ {Ewi

n �R} =
N∑

p=1

u(p)
wi

(ω) �	(p)(ω) +
2N∑

p=N+1

d(p)
wi

(ω) �	(p)(ω), (30)

where u(p)
wi and d(p)

wi are amplitudes of the guided modes, N = NR NW L, and we assume that
all the guided modes are ordered in the following way: p = 1 to N are occupied by the
propagating guided modes with Re[kp] > 0 and evanescent guided modes with Im[kp] > 0,
whereas p = N + 1 to 2N are occupied by the propagating guided modes with Re[kp] < 0 and
evanescent guided modes with Im[kp] < 0 (illustrated by the arrows in figure 12). Assuming

that the amplitudes, u(p)
w1 and d(p)

w2 , of all the propagating (evanescent) guided modes which
propagate (decay) in the direction of the device are known (they depend on the purpose of our
calculation or on the experimental set-up), we can now substitute equation (30) into (23) and,
solving the resulting system of coupled equations, find the unknown expansion coefficients
En �R for the sites �R inside the domain of the device (which can be used, e.g., for visualization
of the field propagation through the device), and the amplitudes, u(p)

w2 and d(p)
w1 of all outgoing

propagating and growing evanescent guided modes.
Generally, we are interested not in the amplitudes of the guided modes but in the

transmission and reflection coefficients which constitute links between incoming and outgoing
waves. These coefficients can be calculated by successively varying the amplitudes of the
incoming modes such that there is a unit amplitude associated with exactly one element
contained in the set {u(p)

w1 , d(p)
w2 , p = 1, . . . , N} of incoming amplitudes. For instance, assuming

that the only incoming mode j of the first waveguide has non-vanishing amplitude, we obtain
from the solution of equation (23) the corresponding elements

tuu
i j (ω) = u(i)

w2
(ω)/u( j)

w1
(ω) and rdu

i j (ω) = d(i)
w1

(ω)/u( j)
w1

(ω) ∀i (31)

of the transmission and reflection matrices, T̂ uu ≡ {tuu
i j } and R̂du ≡ {rdu

i j }, which describe the
transmission from lead W1 to lead W2 and the reflection back into lead W1, respectively. In the
same way, assuming that the only incoming mode j of the second waveguide has non-vanishing
amplitude, we obtain the corresponding elements

tdd
i j (ω) = d(i)

w1
(ω)/d( j)

w2
(ω) and rud

i j (ω) = u(i)
w2

(ω)/d( j)
w2

(ω) ∀i (32)

of the matrices T̂ dd and R̂ud , which describe the transmission from lead W2 to lead W1 and
the reflection back into lead W2, respectively.

The behaviour of the two-port device is fully characterized by its scattering matrix Ŝ2-port,
which connects the various incoming (decaying) and outgoing (growing) modes according to( �uw2�dw1

)
= Ŝ2-port

( �uw1�dw2

)
, Ŝ2-port =

(
T̂ uu R̂ud

R̂du T̂ dd

)
, (33)

where we have introduced vector notation for �uwi = {u(p)
wi } and �dwi = {d(p)

wi }. The extension
of this technique to multi-port devices is perfectly straightforward.

In figure 13 we present the results of Wannier function calculations of the reflection spectra
for different bend geometries with attached single-mode waveguide leads (see figure 10) that
are embedded in our model PC. The results of the Wannier function approach using NR = 5,
L = 5, and the NW = 6 energetically lowest-lying Wannier functions are in very good
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Figure 13. Reflection spectra, |R(ω)|2, for four different bend geometries embedded in a PC. The
results of the Wannier function approach using NR = 5, L = 5, and the NW = 6 energetically
lowest-lying Wannier functions (diamonds), are in very good agreement with the results of FDTD
calculations [62] (solid curves). The parameters of the underlying PC are the same as those in
figure 1.

agreement with FDTD calculations of the MIT group [62]. The deviations near the lower
band edge originate in the fact that the FDTD simulations have not been carried far enough to
accurately sample the signals associated with very low group velocities near the band edge.

The efficiency of the Wannier function approach for transmission calculations becomes
apparent when considering that—once the optimally localized Wannier functions for the
underlying PC have been obtained—the calculation of a single data point in the reflection
spectra of figure 13 reduces to the solution of a sparse system of some 800 equations, which
even on a laptop computer takes only a few seconds. We emphasize that even using the multiple-
multipole method based on the expansion of the electric field into cylindrical harmonics (which
until now has been considered as the most efficient method for 2D PCs formed by arrays of
ideally cylindrical rods or holes) it would be necessary to solve a system of about 3265
equations (i.e., four times as large) to reach the same accuracy (see figure 9 in [51]). Perhaps
more importantly and in contrast to the multiple-multipole expansion methods, the Wannier
function approach can be applied to PCs with arbitrary shapes of individual scatterers.

Therefore, the Wannier function approach outlined above will

(i) enable a reverse engineering of defect structures with prescribed functionality and
(ii) allow detailed studies regarding the robustness of successful designs with respect to

fabricational tolerances.

Moreover, the Wannier function approach can be straightforwardly applied, with comparable
efficiency, to investigations of the transmission spectra through PC circuits made from highly
dispersive and/or non-linear materials.

Of great importance is the fact that, in contrast to the FDTD method, the Wannier
function approach permits one to accurately and efficiently calculate the complete scattering
matrices (33) of PC devices. As a consequence, it provides us with the possibility to model
large-scale PC devices exploiting all the advantages of a scattering matrix technique, as we
discuss briefly in the next section.

5. Large-scale photonic crystal circuits

Commonly, the transmission properties of large-scale PC circuits are studied using the same
methods as are used for investigations of individual PC devices (e.g., with the FDTD method).
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However, when the size of a PC circuit grows significantly, even such an efficient method as
the above-described Wannier function technique becomes computationally expensive.

Recently, we have demonstrated [54] that large-scale PC circuits can be very accurately
described on a new level of abstraction, when considering them as systems of point-sized
functional PC devices that are connected by PC waveguides. Assuming that different
waveguides of a PC circuit are sufficiently far apart, one may safely neglect the cross-talk
between them and one can completely characterize the transmission properties of functional
PC devices in terms of their scattering matrices (S-matrices). As demonstrated in section 4.3,
these S-matrices are expressed in terms of the guided modes of attached waveguides (see
equation (33) for the case of two-port PC devices).

Within this framework, PC waveguides connecting PC devices should also be considered
as two-port PC devices of special type and, therefore, should be described by the corresponding
S-matrices. For instance, a perfect non-absorptive waveguide connector of length 
 supporting
guided modes with the dispersion relations ki(ω), i = 1, . . . , 2N , may be regarded as a
perfectly transmitting and symmetric two-port device and, as a consequence, may be described
by the diagonal S-matrix

Ŝw =
( eik1(ω)
 0 0

0 · · · 0
0 0 eik2N (ω)


)
. (34)

In the case of absorptive, 2D PC slab, or disordered waveguide connectors, the S-matrices
become more complex and should be calculated explicitly as discussed in section 4.3.

The S-matrix of an entire circuit consisting of many PC devices and waveguide connectors
can then be calculated recursively from the S-matrices of the individual elements that make
up the circuit [54]. In this context, we would like to emphasize the paramount importance
of determining the completeS-matrix in terms of the complex transmission and reflection
coefficients through equations (31), and (32). For instance, besides the intriguing properties
of the reflection spectra displayed in figure 13, the waveguide bends shown in figure 13
generally exhibit a non-trivial variation in the complex phases of the transmission and reflection
coefficients. These phase dependences have to be fully accounted for when describing the
multiple-scattering problem of PC circuits through cascaded S-matrices [54].

It should be emphasized that the main difference of our scattering matrix approach
from other S-matrix algorithms used, e.g., for modelling layered diffraction gratings [65]
or small-scale integrated optics devices such as PC waveguides and air-bridge microcavities
[66], consists in the choice of an appropriate expansion basis. In contrast to the commonly
used basis of extended plane waves, our scattering matrix approach is based on the guided
modes of waveguides attached to the PC devices under consideration. Only the incorporation
of this crucial information about the underlying PC waveguides leads to S-matrices of low
order. Moreover, key simplifications arise when the individual devices are connected through
sufficiently long waveguide connectors such that their evanescent guided modes can be
neglected altogether. As a consequence, the behaviour of a highly complex circuit may be
described through S-matrices of very low order, enabling a simple and transparent PC circuit
theory based on cascaded scattering matrices [54]. For instance, in the case of two-port devices
with single-mode waveguide leads, the corresponding S-matrices are simple 2 × 2 matrices.

6. Conclusions

We have described a solid state theoretical approach for the calculation of the optical properties
of defect structures embedded in PCs. An expansion of the electromagnetic field into photonic
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Wannier functions facilitates the construction of effective lattice models which in turn allow
very accurate and highly efficient computations. Once the Wannier functions for a given
underlying PC have been determined, this approach requires minimal computational effort for
the determination of cavity frequencies and associated mode structures, waveguide dispersion
relations, and the transmission and reflection spectra of complex devices. The results of the
Wannier function approach are in excellent agreement with standard techniques such as the
plane-wave-based supercell method and FDTD calculations and offer considerable insight
into the nature of defect modes in PCs. The efficiency and accuracy of the Wannier function
approach will enable a reverse engineering of defect structures with prescribed functionality
and allow the carrying out of detailed studies regarding the robustness of successful designs
with respect to fabricational tolerances.

Furthermore, in contrast to the standard techniques, the Wannier function approach
facilitates the complete characterization of defect structures through the construction of
appropriate S-matrices. This enables a simple and transparent PC circuit theory to be based
on cascaded scattering matrices expressed in the basis of guided modes of PC waveguides
instead of the commonly used basis of plane waves. Finally, we want to mention that the
Wannier function approach may easily be extended to the case of 3D PCs as well as to PC
defect structures in anisotropic, highly dispersive, and non-linear materials.

Acknowledgments

The present work has greatly benefited from stimulating and insightful discussions with
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